精英家教网 > 初中数学 > 题目详情

先阅读下列材料,然后解决相关问题.

圆锥可以看做是由一个直角三角形绕其中的一条直角边旋转一周得到的图形,如图(2)所示,这条直角边所在直线()称为圆锥的轴.圆锥的轴通过底面圆的圆心,并且垂直于底面.可以看出,经过圆锥的轴的剖面是一个等腰三角形,它的腰长(AB与AC)等于圆锥的母线长,底边长等于圆锥底面的直径.我们把这个等腰三角形的顶角称为圆锥的锥角.

如图所示(1),一张半圆形纸片,用这张半圆形纸片围成一个圆锥,如图所示(2),求这个圆锥的锥角.

答案:
解析:

  解:设半圆的半径为R,所围成的圆锥如图所示(2),则它的底面圆的周长==πR因为2π×,所以AB=R,因此圆锥的锥角为

  解题指导:由前段提供的材料,已经知道△ABC必为等腰三角形,现要求∠BAC的值,可以考虑△ABC是否为等边三角形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题:
从A,B,C三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作C23=
3×2
2×1
=3.
一般地,从m个元素中选取n个元素组合,记作:Cnm=
m(m-1)…(m-n+1)
n(n-1)…×3×2×1

例:从7个元素中选5个元素,共有C57=
7×6×5×4×3
5×4×3×2×1
=21
种不同的选法.
问题:从某学习小组10人中选取3人参加活动,不同的选法共有
 
种.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题.
从A、B、C 3张卡片中选2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素组合,不同的选法共有C23=
3×2
2×1
=3(种),
一般地,从m个元素中选取n个元素(n≤m)组合,记作Cnm=
m(m-1)…(m-n+1)
n(n-1)×…×3×2×1

例如,从7个元素中选取5个元素组合,不同的选法共有C57=
7×6×5×4×3
5×4×3×2×1
=21(种).
问:从某个10人的学习小组中选取3人参加活动,不同的选法共有多少种?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题:
材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.
一般地,从n个不同的元素中选取m个元素的排列数记作Anm.Anm=n(n-1)(n-2)(n-3)…(n-m+1)(m≤n)
例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.
材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为
C
2
3
=
3×2
2×1
=3

一般地,从n个不同的元素中取出m个元素的排列数记作Anm
Anm=n(n-1)(n-2)(n-3)…(n-m+1)(m≤n)
例:从6个不同的元素选3个元素的组合数为:
C
3
6
=
6×5×4
3×2×1
=20

问:(1)从某个学习小组8人中选取3人参加活动,有
 
种不同的选法;
(2)从7个人中选取4人,排成一列,有
 
种不同的排法.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

31、先阅读下列材料,然后完成下列填空:
点A、B在数轴上分别表示实数 a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设A点在原点,如图1|AB|=|OB|=|b|=|b-0|=|a-b|;
当A、B两点都不在原点时,
①如图2,A、B两点都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|
②如图3,A、B两点都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|
③如图4,A、B两点分别在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=a+(-b)=|a-b|
综上所述,
(1)上述材料用到的数学思想方法是
数形结合、分类讨论
(至少写出2个)
(2)数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:
数轴上表示2和5的两点之间的距离是
3
;数轴上表示-2和-5的两点之间的距离是
3
;数轴上表示1和-4的两点之间的距离是
5

(3)数轴上表示x和-1的两点A和B之间的距离是
|x+1|
;如果|AB|=2,那么x为
1或-3

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,然后解答问题
若关于x的方程:mx-3=3x+5解是正整数,求m的整数值.
解:由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整数,m是整数
∴m+3是8的正整数约数
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

试仿照上面的解法,回答下面的问题:
若关于y的方程:ny+y+5=-4y+12解是正整数,求n的整数值.

查看答案和解析>>

同步练习册答案