精英家教网 > 初中数学 > 题目详情
平行四边形ABCD中,∠B=45°,AD=4cm,对边AB、CD之间的距离EF是(  )
A、2cm
B、2
2
cm
C、4cm
D、3cm
分析:过C向AB作高CM,即可得出EF=CM,∠B=45°,∠BMC=90°,所以△BMC是等腰直角三角形,由平行四边形的性质可知,AD=BC,所以MC的值可求.
解答:精英家教网解:如图,过点C作CM⊥AB,垂足为M,
则EF=CM,
∵平行四边形ABCD中,∠B=45°,AD=4cm,
∴BC=4cm,
∴CM=BM=2
2

∴EF=2
2

故选B.
点评:本题考查了平行四边形的性质,添加适当辅助线,将所求线段转化到三角形中,将四边形问题转为求三角形的边长问题是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,高h=4,则平行四边形ABCD的面积S=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE:EB=1:2,S△AEF=3,则S△FCD=
27
27

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E是BD上一点,AE的延长线交DC于点F,交BC的延长线于点G.求证:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:
①BE=DF;②AG=GH=HC;③2EG=BG;④S△ABC=5S△AGE
其中正确的有
①②③④
①②③④
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AE=6,求AF的长.

查看答案和解析>>

同步练习册答案