【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④S△CEF=2S△ABE , 其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等边三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中, ,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正确).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正确),
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正确).
设EC=x,由勾股定理,得
EF= x,CG= x,
AG=AEsin60°=EFsin60°=2×CGsin60°= x,
∴AC= ,
∴AB= ,
∴BE= ﹣x= ,
∵S△CEF= ,
S△ABE= = ,
∴2S△ABE= =S△CEF , (故④正确).
综上所述,正确的有4个,
故选:D.
通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,利用三角形的面积公式分别表示出S△CEF和2S△ABE , 再通过比较大小就可以得出结论.
科目:初中数学 来源: 题型:
【题目】把(﹣8)+(+3)﹣(﹣5)﹣(+7)写成省略括号的代数和形式是( )
A.﹣8+3﹣5﹣7
B.﹣8﹣3+8﹣7
C.﹣8+3+5+7
D.﹣8+3+5﹣7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A.若a<b,则|a|<|b|
B.两直线平行,同旁内角相等
C.1的平方根等于它本身
D.任意多边形的外角和为360°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+2,y随x的增大而增大,则该函数的图象一定经过( )
A. 第一、二、三象限 B. 第一、二、四象限
C. 第一、三、四象限 D. 第二、三、四象限
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com