精英家教网 > 初中数学 > 题目详情
8、如图,已知△ABC中,AD为高,且AB+CD=AC+BD,求证AB=AC.
分析:通过勾股定理得出等式AB2-BD2=AC2-CD2,与已知等式联立得AB+BD=AC+CD,从而得出最后结果.
解答:证明:∵三角形ABD和ACD是直角三角形,
∴AB2-BD2=AC2-CD2①,
又由AB+CD=AC+BD得:
AB-BD=AC-CD②,
由①②得:
AB+BD=AC+CD③,
联立公式①③得:
AB=AC.
点评:本题主要考查了勾股定理的运用,要掌握勾股定理的含义:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案