【题目】已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是_____.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F,求证:
(1)EF⊥AB;(2)DE=2DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.
(1)求甲、乙两厂每天各加工多少套防护服?
(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点.
(1)当k=1时,求A、B两点的坐标;
(2)当k=2时,求△AOB的面积;
(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为Sn,若S1+S2+…+Sn=,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.
(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);
(2)求海轮在B处时与灯塔C的距离(结果保留整数).
(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】朗读者
自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级
、
班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩
满分为100分
如图所示.
平均数 | 中位数 | 众数 | |
九 | 85 | 85 | |
九 | 80 |
根据图示填写表格;
结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD和正方形OPEF中,边AD与边OP重合,,
,点M、N分别在正方形ABCD的边BC、CD上,且
.将正方形OPEF以每秒2个单位的速度向右平移,当点F与点B重合时,停止平移.设平移时间为t秒.
(1)请求出t的取值范围;
(2)猜想:正方形OPEF的平移过程中,OE与NM的位置关系.并说明理由.
(3)连结DE、BE.当的面积等于7时,试求出正方形OPEF的平移时间t的值.
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=|x|-2的图象特征进行了探究,探究过程如下:
⑴自变量x的取值范围是全体实数,x与y的几组对应值如下:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 1 | m | -1 | -2 | n | 0 | 1 | 2 | … |
其中,m= ,n= .
⑵根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象;
⑶观察函数图象,写出一条特征: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com