精英家教网 > 初中数学 > 题目详情
29、已知:如图,AC=BD,DF=CE,∠ECB=∠FDA.求证:AF=BE.
分析:此题比较简单,根据题目的已知条件容易证明△AFD≌△BEC,再根据全等三角形的性质就可以得到题目的结论.
解答:证明:∵AC=BD,
∴AC+CD=BD+CD,
∴AD=BC,而DF=CE,∠ECB=∠FDA,
∴△AFD≌△BEC,
∴AF=BE
点评:本题考查了全等三角形的攀登及性质;三角形全等的判定是中考的常考题型,一般以考查三角形全等的方法为主,判定两个三角形全等,然后根据全等三角形的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、已知:如图,AC=DF,AC∥FD,AE=DB,则根据
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E精英家教网是切点,
求证:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1OD

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,AC、BD交于O点,OA=OC,OB=OD、则不正确的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC平分∠BAD,CE⊥AB于E点,CF⊥AD于F点,在AB上有一点M,且CM=CD.
(1)请你用尺规作出点M的位置,
(2)若AF=12,DF=4,求AM的长,
(3)试说明∠CDA与∠CMA的关系.

查看答案和解析>>

同步练习册答案