【题目】在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.
(1)如图1,求证:弧AC等于弧CD;
(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;
(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.
【答案】(1)详见解析;(2)详见解析;(3)4.
【解析】
(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;
(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;
(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.
(1)证明:连接BC、CD,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵∠CAB+∠CAD=90°,
∴∠CBA=∠CAD,
又∵∠CDA=∠CBA,
∴∠CDA=∠CAD,
∴AC=CD,
∴ ;
(2)过点C作CG⊥AD于点G,则∠CGA=90°,
由(1)知AC=CD,
∴CG垂直平分AD,
∴AD=2AG,
∵AF=CF,
∴∠CAD=∠ACE,
∵∠CAD+∠CAB=90°,
∴∠ACE+∠CAB=90°,
∴∠AEC=90°=∠CGA,
∵AC=CA,
∴△ACG≌△CAE(AAS),
∴AG=CE,
∴AD=2CE;
(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,
∴∠OHB=90°=∠CEO,
∵OA=OB,
∴OH是△ABD的中位线,
∴AD=2OH,
由(2)知AD=2CE,
∴OH=CE,
∵OC=OB,
∴Rt△OEC≌Rt△BHO(HL),
∴OE=BH=6,
∴OC=OA=AE+OE=4+6=10,
∴在Rt△OEC中,CE2=OC2﹣OE2=82,
∴在Rt△AEC中,AC= =4.
科目:初中数学 来源: 题型:
【题目】如图,点是直径上的一点,过作直线,分别交于,两点,连接,并将线段绕点逆时针旋转得到,连接,分别交和于,,连接.
(Ⅰ)求证:;
(Ⅱ)若点在直径上运动(不与点,重合),其它条件不变,请问是否为定值?若是,请求出其值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0),经过点(1.0),对称轴l如图所示,若M=a+b﹣c,N=2a﹣b,P=a+c,则M,N,P中,值小于0的数有( )个.
A.2B.1C.0D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.
如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.
(1)若△ACD的面积为16.
①求抛物线解析式;
②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最大值;
(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.
(1)若△ACD的面积为16.
①求抛物线解析式;
②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最大值;
(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的边FG在BC上,顶点D,E分别在AB,AC上.
(1)如图1,过点A作AH⊥BC于点H,交DE于点K,求正方形DEFG的边长;
(2)如图2,在BE上取点M,作MN⊥BC于点N,MQ∥DE交AB于点Q,QP⊥BC于点P,求证:四边形MNPQ是正方形;
(3)如图3,在BE上取点R,使RE=FE,连结RG,RF,若tan∠EBF=.求证:∠GRF=90°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.
(1)当△ABD为等边三角形时,
①依题意补全图1;
②PQ的长为 ;
(2)如图2,当α=45°,且BD=时,求证:PD=PQ;
(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com