精英家教网 > 初中数学 > 题目详情
5.如图1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=90°;
(2)请探索∠E与∠F之间满足的数量关系?说明理由;
(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.

分析 (1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;
(2)如图1,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;
(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=$\frac{1}{2}$∠BEF=x°,∠EFG=$\frac{1}{2}$∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.

解答 解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,
∴EM∥AB∥FN,
∴∠B=∠BEM=30°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=120°,
∴∠DFN=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠MEF+60°
∴∠EFD=∠BEF+30°=90°;
故答案为:90°;

(2)如图1,分别过点E,F作EM∥AB,FN∥AB,
∴EM∥AB∥FN,
∴∠B=∠BEM=30°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=120°,
∴∠DFN=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠MEF+60°,
∴∠EFD=∠BEF+30°;

(3)如图2,过点F作FH∥EP,
由(2)知,∠EFD=∠BEF+30°,
设∠BEF=2x°,则∠EFD=(2x+30)°,
∵EP平分∠BEF,GF平分∠EFD,
∴∠PEF=$\frac{1}{2}$∠BEF=x°,∠EFG=$\frac{1}{2}$∠EFD=(x+15)°,
∵FH∥EP,
∴∠PEF=∠EFH=x°,∠P=∠HFG,
∵∠HFG=∠EFG-∠EFH=15°,
∴∠P=15°.

点评 本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在边长为4的正方形ABCD中,E为AD的中点,F为BC边上一动点,设BF=t(0≤t≤2),线段EF的垂直平分线GH分别交边CD,AB于点G,H,过E做EM⊥BC于点M,过G作GN⊥AB于点N.
(1)当t≠2时,求证:△EMF≌△GNH;
(2)顺次连接E、H、F、G,设四边形EHFG的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G,为什么?
解:因为∠BAE+∠AED=180°(已知),
所以AB∥CD (已知)
所以∠BAE=∠AEC(同旁内角互补,两直线平行)
因为∠1=∠2(已知)
而∠BAE=∠FAE+∠1,∠AEC=∠GEA+∠2,
所以∠FAE=∠GEA (等式的性质)
所以AF∥EG (内错角相等,两直线平行)
所以∠F=∠G(两直线平行,内错角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:$\sqrt{4}$+|-2|+$\root{3}{-27}$+(-1)2016

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.把一张长方形纸片按图中那样折叠后,若得到∠BGD′=40°,则∠C′FE=110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
(1)计算:$\sqrt{16}$+$\root{3}{-27}$-|1-$\sqrt{2}$|;
(2)解方程组$\left\{{\begin{array}{l}{4x+3y=1}\\{2x-y=3}\end{array}}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算
(1)(-1)2017-($\frac{1}{3}$)-1+$\root{3}{8}$
(2)(1+$\frac{1}{x-2}$)÷$\frac{{x}^{2}-2x+1}{{x}^{2}-4}$,其中x=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P,点Q同时从点B出发,点P以2cm/s的速度沿B→A→C运动,终点为C,点Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=-$\frac{4}{5}$t2+$\frac{28}{5}$t(4≤t≤7);③线段PQ的长度的最大值为$\frac{6}{5}$$\sqrt{10}$;④若△PQC与△ABC相似,则t=$\frac{40}{7}$秒,其中正确的说法是(  )
A.①②④B.②③④C.①③④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.一个三角形的一条边长与这条边上的高的和为8,设该三角形的这条边长为x,面积为y,则y的最大值是(  )
A.4B.8C.12D.16

查看答案和解析>>

同步练习册答案