精英家教网 > 初中数学 > 题目详情

【题目】如图,直线m经过A40)、B3,﹣),直线n经过原点且与直线m相交于DD点的横坐标为﹣2

1)求直线mn的表达式;

2)求△OBD的面积.

【答案】(1)yx;(2C0,﹣6),SOBD15

【解析】

1)根据待定系数法求得直线m的解析式,把D横坐标代入直线m,可求得纵坐标,再由待定系数法可求得直线n的解析式;
2)可先求得C点坐标,则可根据SOBD=SOBC+SODC求得OBD的面积.

解:(1)设直线m的解析式为ykx+b

A40)、B3,﹣)代入得

解得

∴直线m的解析式为yx6

∵直线mDD点的横坐标为﹣2

y×(﹣2)﹣6=﹣9

D(﹣2,﹣9),

设直线n的解析式为yax

∴﹣9=﹣2a,解得a

∴直线n的解析式为yx

2)在yx6中,令x0,可得y=﹣6

C0,﹣6),

SOBDSOBC+SODC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,直线ab,直线c与直线ab分别相交于CD两点,直线d与直线ab分别相交于AB两点,点P在直线AB上运动(不与AB两点重合)

(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+PDB,请说明理由;

(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;

(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

根据以上信息,解答下列问题:
(1)设租车时间为 小时,租用甲公司的车所需费用为 元,租用乙公司的车所需费用为 元,分别求出 关于 的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.

(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是

证明:

(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是

证明:

(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角

(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABCD

(1)如图1,点E在直线BD的左侧,猜想∠ABE、CDE、BED的数量关系,并证明你的结论;

(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;

(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).

(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t=s时,四边形PBQE为菱形;
②当t=s时,四边形PBQE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(知识重现)我们知道,在axN中,已知底数a,指数x,求幂N的运算叫做乘方运算.例如23=8:已知幂N,指数x,求底数a的运算叫做开方运算,例如=2

(学习新知)

现定义:如果ax=Na0a1),即ax次方等于Na0a1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.其中a叫做对数的底数,N叫做真数,x叫做以a为底N的对数,例如log28=3,零没有对数;在实数范围内,负数没有对数.

(应用新知)

1)选择题:在式子log5125中,真数是_______

2计算以下各对数的值:log39=_______log327=_______

根据中计算结果,请你直接写出logaMlogaNlogaMN)之间的关系,(其中a0a1M0N0).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

查看答案和解析>>

同步练习册答案