精英家教网 > 初中数学 > 题目详情
如图,直线l1与l2相交于点A,点B、C分别在直线l1与l2上,且BC⊥l2,垂足为C点.点D在直线l2上,AC=4,BC=3.
(1)画出⊙O,使⊙O经过点B且与直线l2相切于点D(不写画法,保留画图痕迹);
(2)是否存在这样的⊙O1,既与直线l2相切又与直线l1相切于点B?若存在,求出⊙O1的半径;若不存在,请说明理由.
(1)如图1:①连接BD,作BD的垂直平分线MN,
②过点D作直线l2的垂线,交直线MN于点O,
③以点O为圆心,OD长为半径作圆,
则⊙O即为所求的圆;

(2)存在.
如图2:设⊙O1切直线l2于点E,连接O1B,O1E,过点O1作O1F⊥BC于点F,
∵BC⊥l2
∴∠O1EC=∠ECF=∠O1FD=90°,∠O1BA=90°,
∴四边形ECFO1是矩形,
∴FC=O1E,
∵∠BAC+∠ABC=90°,∠O1BF+∠ABC=90°,
∴∠BAC=∠O1BF,
∵∠O1FB=∠ACB=90°,
∴△BO1F△ABC,
BF
AC
=
O1B
AB

设⊙O1的半径为x,
∵AC=4,BC=3,
∴BF=BC-CF=3-x,
在Rt△ABC中,AB=
AC2+BC2
=5,
3-x
4
=
x
5

解得:x=
5
3

∴⊙O1的半径为
5
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,则∠ACB=(  )
A.60°B.75°C.105°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC的延长线于E、F、G,⊙O是△CGF的外接圆,求证:CE和⊙O相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了(  )
A.2周B.3周C.4周D.5周

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC交BA的延长线于点F,E为垂足.
(1)求证:DF为⊙O的切线;
(2)若AB=6,DF=4,求FA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:射线OF交⊙O于点B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.
(1)图a是点P在圆内移动时符合已知条件的图形,请你在图b中画出点P在圆外移动时符合已知条件的图形;
(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较,写出一条与△DPE的边、角或形状有关的规律;
(3)在点P移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D点,则DF的长为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

设计一把直尺ABC,BC在地面上,AB与地面垂直,并且AB=10cm,移动一个半径不小于10cm的圆形轮子,使轮子紧靠A点,且与BC相切于D点(如图).设计要求在D处的刻度恰好显示这个轮子的半径(以厘米为单位).那么,当BC的长度为1M时,BC上可标出的最大刻度是______.

查看答案和解析>>

同步练习册答案