精英家教网 > 初中数学 > 题目详情
4.在$\frac{1}{3}$,0,$\sqrt{2}$,-1 这四个数中随机取出两个数,则取出的两个数均为正数的概率是$\frac{1}{6}$.

分析 画树状图展示所有12种等可能的结果数,再找出取出的两个数均为正数的结果数,然后根据概率公式求解.

解答 解:画树状图为:

共有12种等可能的结果数,其中取出的两个数均为正数的结果数为2,
所以取出的两个数均为正数的概率=$\frac{2}{12}$=$\frac{1}{6}$.
故答案为$\frac{1}{6}$.

点评 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.问题探究:
【1】新知学习
(1)梯形的中位线:连接梯形两腰中点的线段叫做梯形的中位线.
(2)梯形的中位线性质:梯形的中位线平行于两底,并且等于两底和的一半.
(3)形如分式$\frac{m}{x+2m}$ (m为常数,且m>0),若x>0,则$\frac{m}{x+2m}$,并且有下列结论:
当x 逐渐增大时,分母x+2m逐渐增大,分式$\frac{m}{x+2m}$的值逐渐减少并趋于0,但仍大于0.当x 逐渐减少时,分母x+2m逐渐减少,分式$\frac{m}{x+2m}$的值逐渐增大并趋于$\frac{m}{2m}$,即趋于$\frac{1}{2}$,但仍小于$\frac{1}{2}$.
【2】问题解决一
如图2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分别是AB、CD的中点.
(1)设AD=7,BC=17,求$\frac{{S}_{四边形BCFE}}{{S}_{四边形ADFE}}$的值.
(2)设AD=a(a为正的常数),BC=x,请问:当BC的长不断增大时,$\frac{{S}_{四边形BCFE}}{{S}_{四边形ADFE}}$的值能否大于或等于3,试证明你的结论.
【3】问题解决二
进一步猜想:任何一个梯形的中位线所分成的两部分图形的面积的比值所在的范围是什么,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,∠ACB=90°,点D在BC边上,且BD=BC,过点B作CD的垂线交AC于点O,以O为圆心,OC为半径画圆.
(1)求证:AB是⊙O的切线;
(2)若AB=10,AD=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=6m.
(1)求∠CAE的度数;
(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据:$\sqrt{2}$=1.4,$\sqrt{3}$=1.7,$\sqrt{6}$=2.4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.掷一质地均匀的正方体骰子,朝上一面的数字,与3相差1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的弦,⊙O的半径OC⊥AB于点D,若AB=6cm,OD=4cm,则⊙O的半径为5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装每天可售出20件.为了迎接“六一”节,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么每天就可多售出2件.
(1)如果童装店想每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?
(2)每件童装降价多少元时童装店每天可获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,点D、E分别是△ABC边BC、AB上的点,AD、CE相交于点G,过点E作EF∥AD交BC于点F,且CF2=CD•CB,联结FG.
(1)求证:GF∥AB;
(2)如果∠CAG=∠CFG,求证:四边形AEFG是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为(t,$\frac{2}{3}$t);
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?
(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的$\frac{1}{3}$?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案