精英家教网 > 初中数学 > 题目详情
23、已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;
(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是
FG=DC+AD
.(只写答案)
分析:(1)本题可采用截取的方法,先证明AF=GF,只要再证明DF=CD即可,这只要证明这两条线段所在的三角形全等即可;
(2)结合(1)及图形我们可猜测出:FG=DC+AD;证法同(1),先证△FDB≌△CDA,得DC=DF,进而可得出FG=DC+AD的结论.
解答:(1)证明:∵∠ADB=90°,∠ABC=45°,
∴∠BAD=∠ABC=45°;
∴AD=BD;
∵∠BEC=90°,∴∠CBE+∠C=90°;
∵∠DAC+∠C=90°,∴∠CBE=∠DAC;
∵∠FDB=∠CDA=90°,
∴△FDB≌△CDA;
∴DF=DC;
∵GF∥BD,
∴∠AGF=∠ABC;
∴∠AGF=∠BAD;
∴FA=FG;
∴FG+DC=FA+DF=AD.

(2)FG=DC+AD.
证法同(1).
点评:此题考查的是等腰直角三角形以及全等三角形的判定和性质;通过全等三角形证得CD=DF是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;
(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是
 

(3)在(2)的条件下,若AG=5
2
,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=
3
2
,求线段PQ的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.
求证:①△BDF≌△ADC;
②FG+DC=AD;
(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源:黑龙江省中考真题 题型:解答题

已知:△ABC的高AD所在直线与高BE所在直线相交于点F。
(1)如图(1),若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交AB于点G,求证:FG+DC=AD;
(2)如图(2),若∠ABC=135°,过点F作FG∥BC,交AB的延长线于点G,则FG、DC、AD之间满足的数量关系是____;
(3)在(2)的条件下,若,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图(3)),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若,求线段PQ的长。

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《三角形》(12)(解析版) 题型:解答题

(2009•哈尔滨)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD;
(2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是______;
(3)在(2)的条件下,若AG=,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别与线段BM、线段BN相交于P、Q两点,若NG=,求线段PQ的长.

查看答案和解析>>

同步练习册答案