精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.

(1)求线段MN的长度;

(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.

【答案】(1)10cm;(2)MN=(a+b)cm.

【解析】

由已知条件可知,MN=MC+NC,又因为点M、N分别是AC、BC的中点,则MC=AC,NC=BC,故MN=MC+NC=(AC+BC)=AB.

1)AC=6cm,BC=14cm,

M、N分别是AC、BC的中点,

MC=3cm,NC=7cm,

MN=MC+NC=10cm;

2MN=(a+b)cm.理由是:

AC=acm,BC=bcm,

M、N分别是AC、BC的中点,

MC=acm,NC=bcm,

MN=MC+NC=(a+b)cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:


小敏的作法如下:
如图,
①链接op,做线段op的垂直平分线MN,交OP于点C
②以点C为圆心,CO的长为半径作圆,交⊙O于A、B两点
③作直线PA、PB所以直线PA,PB就是所求的切线

老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣ +bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣ +bx+c的图象分别交于B,C两点,点B在第一象限.

(1)求二次函数y=﹣ +bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】回答问题:

(1)已知∠AOB的度数为54°,在∠AOB的内部有一条射线OC,满足∠AOC=∠COB,在∠AOB所在平面上另有一条射线OD,满足∠BOD=∠AOC,如图1和图2所示,求∠COD的度数.

(2)已知线段AB长为12cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上满足BD=AC.请画出示意图,求出线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为(
A.
B.
C.2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1 , B2 , B3 , …,则B2017的坐标为( )

A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象经过点A(1,1)和点B(1,3).求:

(1)求一次函数的表达式;

(2)求直线AB与坐标轴围成的三角形的面积;

(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.

(1)求转动一次转盘获得购物券的概率;

(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?

查看答案和解析>>

同步练习册答案