分析 (1)先求出D、E两点的坐标,进而可得出OD、OE的长,再由B点坐标可得出OA,AB的长,由此可得出结论;
(2)先根据全等三角形的性质得出∠AOB=∠OED,再由余角的定义得出OF⊥ED,由勾股定理得出ED的长,再由三角形的面积公式即可得出结论.
解答 解:(1)△AOB≌△OED.
理由:∵y=-$\frac{4}{3}$x+4与x轴、y轴分别交于点D、E,
∴D(3,0),E(0,4),
∴OD=3,OE=4.
∵B(4,3),
∴OA=4,AB=3.
在△AOB与△OED中,
∵$\left\{\begin{array}{l}{AB=OD}\\{∠OAB=∠DOE=90°}\\{OA=OE}\end{array}\right.$,
∴△AOB≌△OED(SAS);
(2)∵△AOB≌△OED,
∴∠AOB=∠OED.
∵∠AOB+∠EOF=90°,
∴∠OED+∠EOF=90°,
∴∠OFE=90°,
∴OF⊥ED.
在Rt△ODE中,ED=$\sqrt{O{E}^{2}+O{D}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∵S△ODE=$\frac{1}{2}$OD•OE=$\frac{1}{2}$DE•OF=6,
∴OF=$\frac{12}{5}$.
点评 本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com