精英家教网 > 初中数学 > 题目详情
5、如图,点D、E、F分别是△ABC的边AB、BC、AC的中点,连接DE、EF,要使四边形ADEF为正方形,还需增加条件:
△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
分析:本题从已知点D、E、F分别是△ABC的边AB、BC、AC的中点,再补充AB=AC,从而得到菱形,由一角为直角的菱形为正方形.
解答:解:要证明四边形ADEF为正方形,
则要求其四边相等,AB=AC,点D、E、F分别是△ABC的边AB、BC、AC的中点,
则得其为平行四边形,
且有一角为直角,
则平行四边形的基础上得到正方形.
故答案为:△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
点评:本题考查了正方形的判定,答案不唯一,一角为直角的直角的菱形为正方形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、EF与AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是(  )
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF与AD互相平分
D、△DFE是△ABC的位似图形

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点D,E,F分别是△ABC的三边AB,AC,BC上的中点,如果△ABC的面积是18cm2,则△DBF的面积是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E、F分别是△ABC三边AB、BC、AC的中点,则△DEF的周长是△ABC周长的(  )

查看答案和解析>>

同步练习册答案