分析 (1)由圆内接四边形的性质和邻补角关系证出∠FBC=∠CAD,再由角平分线和对顶角相等得出∠FAB=∠CAD,由圆周角定理得出∠FAB=∠FCB,即可得出结论;
(2)由(1)得:∠FBC=∠FCB,由圆周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,证出△AFB∽△BFD,得出对应边成比例求出BF,得出FD、AD的长,由圆周角定理得出∠BFA=∠BCA=90°,由三角函数求出∠FBA=30°,再由三角函数求出CD的长即可.
解答 (1)证明:∵四边形AFBC内接于圆,
∴∠FBC+∠FAC=180°,
∵∠CAD+∠FAC=180°,
∴∠FBC=∠CAD,
∵AD是△ABC的外角∠EAC的平分线,
∴∠EAD=∠CAD,
∵∠EAD=∠FAB,
∴∠FAB=∠CAD,
又∵∠FAB=∠FCB,
∴∠FBC=∠FCB;
(2)解:由(1)得:∠FBC=∠FCB,
又∵∠FCB=∠FAB,
∴∠FAB=∠FBC,
∵∠BFA=∠BFD,
∴△AFB∽△BFD,
∴$\frac{BF}{FD}=\frac{FA}{BF}$,
∴BF2=FA•FD=12,
∴BF=2$\sqrt{3}$,
∵FA=2,
∴FD=6,AD=4,
∵AB为圆的直径,
∴∠BFA=∠BCA=90°,
∴tan∠FBA=$\frac{AF}{BF}$=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠FBA=30°,
又∵∠FDB=∠FBA=30°,
∴CD=AD•cos30°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
点评 本题考查了相似三角形的判定与性质、圆周角定理、圆内接四边形的性质、三角函数等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x+1=(30-x)-2 | B. | x+1=(15-x)-2 | C. | x-1=(30-x)+2 | D. | x-1=(15-x)+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com