精英家教网 > 初中数学 > 题目详情

用公式法解下列方程:

(1)x2-3x+2=0;(2)2x2+7x=4;(3)x2-2x+2=0.

答案:
解析:

  解答:(1)∵  a1b=-3c2

  b24ac(3)24×1×210

  ∴  x,∴x12x21

  (2)移项,得2x27x40,∵a2b7c=-4

  b24ac724×2×(4)810

  ∴x,∴x1x2=-4

  (3)a1b=-2c2

  b24ac(2)24×1×20

  ∴x.∴x1x2

  分析:一元二次方程的根是由系数abc的值确定的,在解一元二次方程时,先把方程化为一般形式,然后在b24ac0的前提下,把各项系数代入x,就可以求得方程的根.


提示:

注意:当b24ac0时,原方程有两个相等的实数根.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用公式法解下列方程.
(1)(x+1)(x+3)=6x+4;
(2)x2+2(
3
+1)x+2
3
=0;
(3) x2-(2m+1)x+m=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

用公式法解下列方程:
(1)3x2=2-5x;
(2)
3
2
y2-4y=1;
(3)(x+1)(x-1)=2
2
x.

查看答案和解析>>

科目:初中数学 来源: 题型:

用公式法解下列方程:
(1)3x2-2x-1=0;
(2)2y2-y-
12
=0

(3)2x2-7x+5=0;
(4) 2x2-7x-18=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下面的解题过程:
用公式法解下列方程:
(1)2x2-3x-2=0.
解:a=
 
,b=
 
,c=
 

b2-4ac=
 
=
 
>0.
x=
-b±
b2-4ac
2a
=
 
=
 

x1=
 
,x2=
 

(2)x(2x-
6
)=
6
x-3.
解:整理,得
 

a=
 
,b=
 
,c=
 

b2-4ac=
 
=
 

x=
-b±
b2-4ac
2a
=
 
=
 

x1=x2=
 

(3)(x-2)2=x-3.
解:整理,得
 

a=
 
,b=
 
,c=
 

b2-4ac=
 
=
 
<0.
方程
 
实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

用公式法解下列方程:
(1)x2+2x-1=0
(2)16x2+8x=3.

查看答案和解析>>

同步练习册答案