精英家教网 > 初中数学 > 题目详情
13.一个正方形的边长增加了2cm,面积相应增加了28cm2,则这个正方形的边长为6cm.

分析 设这个正方形的边长为xcm,根据题意列出方程,求出方程的解即可得到结果.

解答 解:设这个正方形的边长为xcm,
根据题意得:(x+2)2-x2=28,
整理得:4x+4=28,
解得:x=6,
则这个正方形的边长为6cm,
故答案为:6

点评 此题考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.某校课外兴趣小组在本校学生中开展“感动中国2016年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别ABCD
频数304024b
频率a0.40.240.06
(1)表中的a=0.3,b=6;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为D的人数约为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC=2,P是△ABC所在平面内一点,且满足PA⊥PB,则PC的取值范围为$\sqrt{5}$-1≤PC≤$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2016个点的坐标为(45,9).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知x2+kx+16是一个完全平方式,则k的值为(  )
A.4B.8C.-8D.±8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.将一副三角尺按如图所示的方式叠放在一起,边AB与CD相交于点E,则$\frac{DE}{EC}$的值等于$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A、D作⊙O,⊙O与AB交于点E,AE是⊙O的直径,AD是⊙O的一条弦,且∠A+∠CDB=90°,AD:AE=4:5,BC=6.
(1)求证:直线BD与⊙O相切;
(2)下面是根据题中条件求直径AE长的过程,阅读后请按要求解决下列问题:
解法1.∵AE是⊙O的直径,∴∠ADE=90°=∠C,∴DE∥BC
又∵D是AC的中点,∴$\frac{AE}{AB}$=$\frac{DE}{BC}$=$\frac{1}{2}$=$\frac{AD}{AC}$,∴E是AB的中点,∴DE=$\frac{1}{2}$BC=3.
在Rt△ADE中,设AD=4x,AE=5x,∴(4x)2+32=(5x)2
解之得:x1=1,x2=-1(舍去),∴AE=5x=5,即⊙O的直径为5.
解法2.∵∠A+∠CDB=90°,又∵∠A+∠CBA=90°,∴∠CDB=∠CBA,∠C=∠C,
∴△DCB∽△BCA,∴$\frac{DC}{BC}$=$\frac{BC}{AC}$,∴BC2=DC•AC,又∵AC=2DC=2AD,∴BC2=AD•2AD,
AD=$\frac{4}{5}$AE,62=2×($\frac{4}{5}$AE)2,AE=$\frac{15}{4}$$\sqrt{2}$.
以上两种解法结果不同,那么问题出在哪里呢?
①下列说法正确的是D
A.解法1有错     B.解法2有错     C.解法1、2都有错    
D.解法1、2都没错,但题中条件“AD:AE=4:5”是多余的
②在①中若你选择的是A、B、C中一个,请说明错在哪里?若你选的是D,请删去“AD;AE=4:5”这个条件,求出⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某公司开发出一种高科技电子节能产品,投资2500万元一次性购买整套生产设备,此外生产每件产品需成本20元,每年还需投入500万广告费,按规定该产品的售价不得低于30元/件且不得高于70元/件,该产品的年销售量y(万件)与售价x(元/件)之间的函数关系如下表:
 x(元/件) 30 31 70
 y(万件) 120 119 80
(1)求y与x的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?并求出当盈利最大或亏损最小时该产品的售价;
(3)在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品定价,能否使两年盈利3500万元?若能,求第二年产品的售价;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.有四根细木棒,长度分别为 3cm、5cm、7cm、9cm,以其中任意三条为边可以构成3个三角形.

查看答案和解析>>

同步练习册答案