精英家教网 > 初中数学 > 题目详情
已知如图,抛物线y=ax2+bx+c与x轴相交于B(1,0)、C(4,0)两点,与y轴的正半轴相交于A点,过A、B、C三点的⊙P与y轴相切于点A.
(1)请求出点A坐标和⊙P的半径;
(2)请确定抛物线的解析式;
(3)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).
(1)∵OA是⊙P的切线,OC是⊙P的割线.
∴OA2=OB×OC,
即OA2=1×4,
∴OA=2,
即点A点坐标是(0,2)
如图1,连接PA,过P作PE⊥CO交OC于E显然,四边形PAOE为矩形,
故PA=OE,
∵PE⊥BC,
∴BE=CE,
又∵BC=3,
∴BE=
3
2

∴PA=OE=OB+BE=1+
3
2
=
5
2

即⊙P的半径长为
5
2


(2)将B(1,0)、C(4,0),A(0,2)带入y=ax2+bx+c得:
a+b+c=0
16a+4b+c=0
c=2

解得:
a=
1
2
b=-
5
2
c=2

故抛物线的解析式是:y=
1
2
x2-
5
2
x+2


(3)根据题意∠OAB=∠ADB,
所以△AOB和△ABD相似有两种情况
①∠ABD和∠AOB对应,
如图1,此时AD是⊙P的直径则AB=
5
,AD=5
∴BD=2
5

∵Rt△AMBRt△DAB,
∴MA:AD=AB:BD,
即MA=
AB•AD
BD
=
5
2

∵Rt△AMBRt△DMA,
∴MA:MD=MB:MA
即MB•MD=MA2=
25
4

②∠BAD和∠AOB对应,
如图2,此时BD是⊙P的直径,所以直线MB过P点
∵B(1,0),P(
5
2
,2),
∴直线MB的解析式是:y=
4
3
x-
4
3

∴M点的坐标为(0,-
4
3
),
∴AM=
10
3

由△MAB△MDA,
得MA:MD=MB:MA
∴MB•MD=MA2=
100
9

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,则经过点C的“蛋圆”切线EC的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+c(a≠0)的图象经过点A(1,-1),B(2,5),
(1)求函数y=ax2+c的表达式.
(2)若点C(-2,m),D(n,7)也在函数的图象上,求点C的坐标;点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?(  )
A.41B.42C.42.5D.43

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).
(1)求M型服装的进价;
(2)求促销期间每天销售M型服装所获得的利润W的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为4
3
,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=17,AC=5
2
,∠CAB=45°,点O在BA上移动,以O为圆心作⊙O,使⊙O与边BC相切,切点为D,设⊙O的半径为x,四边形AODC的面积为y.
(1)求y与x的函数关系式;
(2)求x的取值范围;
(3)当x为何值时,⊙O与BC、AC都相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线l1:y1=a(x+1)2+2与l2:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:
①无论x取何值,y2总是负数;
②l2可由l1向右平移3个单位,再向下平移3个单位得到;
③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;
④四边形AECD为正方形.
其中正确的是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案