精英家教网 > 初中数学 > 题目详情
15.如图,测量河宽AB(河的两岸平行),在C点测得∠ACB=32°,BC=60m,则河宽AB约为37.5m.(用科学计算器计算,结果精确到0.1)

分析 在Rt△ABC中,根据AB=BC•tan32°,计算即可;

解答 解:在Rt△ABC中,∵∠B=90°BC=60m,∠C=32°,
∴AB=BC•tan32°≈60×0.625≈37.5m
故答案为37.5.

点评 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.
(1)如图1,若AB=4$\sqrt{2}$,BE=5,求AE的长;
(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,反比例函数y=$\frac{m}{x}$的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1),且与y轴交于点P.
(1)求反比例函数与一次函数的表达式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1、y2、y3的大小关系;
(3)观察图象,直接写出不等式kx+b>$\frac{m}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°.
②求α,β之间的关系式.
(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,抛物线y=ax2+6x+c(a≠0)交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5),点B的坐标为(1,0).
(1)求此抛物线的解析式及定点坐标;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并说明理由;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.诗词文化在中国源远流长,其中蕴含着很深的文化内涵,小天参加了学习举办的“诗词大会”,答对最后两道单选题就顺利通关,第一道单选题与第二道单选题均有4个选项,这两道题小天都不会,不过小天还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)若小天两次“求助”都在第一道题中使用,则小天答对第一道题的概率是多少?
(2)若小天将每道题各用一次“求助”,请用树状图或列表法,求小天顺利通关的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是x轴下方的抛物线上的一个动点,过点M作MN⊥x轴,交直线BC于点N,求四边形MBNA的最大面积,并求出点M的坐标;
(3)在抛物线上是否存在一点P,使△BCP为直角三角形?若存在,求出P点坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算中,正确的是(  )
A.(x+1)2=x2+1B.(x23=x5C.2x4•3x2=6x8D.x2÷x-1=x3(x≠0)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.分解因式a2b-a的结果为a(ab-1).

查看答案和解析>>

同步练习册答案