精英家教网 > 初中数学 > 题目详情

【题目】某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:

成绩(分)

46

47

48

49

50

人数(人)

1

2

1

2

4

下列说法正确的是( )
A.这10名同学的体育成绩的众数为50
B.这10名同学的体育成绩的中位数为48
C.这10名同学的体育成绩的方差为50
D.这10名同学的体育成绩的平均数为48

【答案】A
【解析】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;
平均数= =48.6,
方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;
∴选项A正确,B、C、D错误;
故选:A.
结合表格根据众数、平均数、中位数的概念求解即可. 本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:

蔬菜的批发量(千克)

25

60

75

90

所付的金额(元)

125

300


(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;

(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、AD上,CE与BF相交于G点.若∠EBG=25°,∠GCB=20°,∠AEG=95°,则∠A的度数为何?(  )

A.95
B.100
C.105
D.110

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,D为AB上一点.已知△ADC与△DBC的面积比为1:3,且AD=3,AC=6,请求出BD的长度,并完整说明为何∠ACD=∠B的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ADFBCE中,∠A=B,点D,E,F,C在同一直线上,有如下三个关系式:①.AD=BC;.DE=CF;.BEAF.

.请用其中两个关系式作为条件,另一个作为结论,写出所有正确的结论.

.选择(1)中你写出的一个正确结论,说明它正确的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,点D,E分别在边AC,AB上,点D与点A,点C都不重合,点F在边CB的延长线上,且AE=ED=BF,连接DFAB于点G.若BC=4,则线段EG的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,AB=2,动点DB开始沿BC向点C运动,到达点C后停止运动,将△ABD绕点A旋转后得到△ACE,则下列说法中,正确的是(  )

①DE的最小值为1;②ADCE的面积是不变的;在整个运动过程中,点E运动的路程为2;④在整个运动过程中,△ADE的周长先变小后变大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.

(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案