科目:初中数学 来源: 题型:
根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是( )
A.0 B.1 C.2 D.1或2
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | 0.02 | -0.01 | 0.02 | 0.04 |
查看答案和解析>>
科目:初中数学 来源: 题型:
九年级(10)班数学进行了六次测试,其中李明六次成绩分别为:110、98、97、103、105、105,则他的中位数和众数分别是( )
A.100、105 B.104、105 C.105、105 D.103、105
查看答案和解析>>
科目:初中数学 来源: 题型:
同学们我们知道,直线是恒过定点(0,0)的一条直线,那么你能发现直线
+k经过的定点为 ,用类比的思想和数形结合的方法接着完成下列两题:(1)求证:无论a为何值,抛物线.
(2)是否存在实数a,使二次函数在范围的最值是4?若存在,求a的范围,若不存在,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,直线:经过点一组抛物线的顶点(为正整数)依次是直线上的点,这组抛物线与轴正半轴的交点依次是:(为正整数),设若抛物线的顶点与轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当的大小变化时美丽抛物线相应的的值是
查看答案和解析>>
科目:初中数学 来源: 题型:
如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A ,B和点 D(4, )
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)
写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com