精英家教网 > 初中数学 > 题目详情
(2009•孝感)如图,点P是双曲线(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.

【答案】分析:(1)由反比例函数的图形和性质可知:四边形OAPB面积为K1,△OAE与△OBF面积之和为K2,可求四边形PEOF的面积;
(2)①根据题意,易写点A、B、E、F坐标,可求线段PA、PE、PB、PF的长,发现PA:PE=PB:PF,又∠APB=∠EPF,依据相似三角形判定,可得△APB∽△EPF,∠PAB=∠PEF,从而得出EF与AB的位置关系.
②如果过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.由S△EFQ=S△PEF,可得出S2的表达式,然后根据自变量的取值范围得出结果.
解答:解:(1)四边形PEOF的面积S1=四边形PAOB的面积+三角形OAE的面积+三角形OBF的面积=|k1|+k2=k2-k1; (3分)

(2)①EF与AB的位置关系为平行,即EF∥AB.(4分)
证明:如图,由题意可得:
A(-4,0),B(0,3),
∴PA=3,PE=,PB=4,PF=

,(6分)
又∵∠APB=∠EPF,
∴△APB∽△EPF,
∴∠PAB=∠PEF,
∴EF∥AB;(7分)

②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q,
由上知M(0,),N(,0),Q()(8分)
而S△EFQ=S△PEF
∴S2=S△PEF-S△OEF=S△EFQ-S△OEF
=S△EOM+S△FON+S矩形OMQN
=
=
=,(10分)
当k2>-6时,S2的值随k2的增大而增大,而0<k2<12,(11分)
∵k2=12时S2=24,
∴0<S2<24,S2没有最小值.(12分)
故(1)的答案为:k2-k1
点评:此题难度较大,主要考查了反比例函数、二次函数的图象性质及相似三角形判定.同学们要熟练掌握相似三角形的判定方法.
练习册系列答案
相关习题

科目:初中数学 来源:2010年广东省初中毕业生学业考试数学试卷(十一)(解析版) 题型:解答题

(2009•孝感)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=,BC=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:2010年福建省莆田市中考数学仿真模拟试卷(二)(解析版) 题型:解答题

(2009•孝感)如图,点P是双曲线(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省孝感市中考数学试卷(解析版) 题型:填空题

(2009•孝感)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是   

查看答案和解析>>

科目:初中数学 来源:2009年湖北省孝感市中考数学试卷(解析版) 题型:选择题

(2009•孝感)如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为( )

A.(
B.(
C.(
D.(

查看答案和解析>>

同步练习册答案