精英家教网 > 初中数学 > 题目详情
某商场购进一批单价为5元的日用商品.如果以单价7元销售,每天可售出160件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量每天就相应减少20件.设这种商品的销售单价为x元,商品每天销售这种商品所获得的利润为y元.
(1)给定x的一些值,请计算y的一些值;
x7891011
y     
(2)求y与x之间的函数关系式,并探索:当商品的销售单价定为多少元时,该商店销售这种商品获得的利润最大?这时每天销售的商品是多少件?
【答案】分析:(1)根据等量关系“利润=每件的利润×每天售出的件数”得出单价依次上涨时获得的利润.
(2)根据“利润值=(销售单价-购进单价)×{160-20(销售单价-7)}”,列出一元二次方程.然后再求这个一元二次方程函数值的最大值.
解答:解:由题意得
(1)x=7,y=(7-5)×160=320;
x=8,y=(8-5)×(160-20)=420;
x=9,y=(9-5)×(160-40)=480;
x=10,y=(10-5)×(160-60)=500;
x=11,y=(11-5)×(160-80)=480.

(2)y=(x-5)[160-20(x-7)]
=-20x2+400x-1500
=-20(x-10)2+500
∴x=10时,y有最大值.
160-3×20=100(件),
∴当商品的销售单价定为10元时,该商店销售这种商品获得的利润最大,这时每天销售的商品是100件.
点评:同学们应加强对应用题的理解能力,通过运用方程去求解问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品,经试销发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数,则y与x之间的关系式是
,销售所获得的利润为w(元)与价格x(元/件)的关系式是

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品,销售一段时间后,经调查发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系y=kx+b
(1)确定y与x的函数关系式,并指出x的取值范围;
(2)为了使每月获得利润为1800元,问商品应定为每件多少元?
(3)为了获得了最大的利润,商品应定为每件多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品.若若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)若要使某月的毛利润为1800元,售价应定为多少元?
(3)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?

查看答案和解析>>

同步练习册答案