精英家教网 > 初中数学 > 题目详情

已知⊙O和上的一点A.

(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH.

(2)在(1)作的图形中,如果点E在上,试证明EB是⊙O的内接正十二边形的一边.

答案:
解析:

  (1)过点A的正方形作法如下:①作两条互相垂直的直径AC、BD②依次连结AB、BC、CD、DA得正方形ABCD.正六边形的作法如下:①以A为端点,在⊙O上依次截取等于OA的弦AE、EF、FC、CG、GH②顺次连结AE、EF、FC、OG、GH、HA得正六边形AEFCGH

  (2)证明:连结EO.∵AB是正方形的一边,∴∠AOB=90°,又∵AE是正六边形的一边,∴∠AIE=60°,∴∠EOB=90°-60°=30°,∴EB是⊙O的内接正十二边形的一边.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料后回答问题:
在平面直角坐标系中,已知x轴上的两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离.
如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直线AN1与BM2交于Q点.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意两点A(x1,y1),B(x2,y2)之间的距离公式:|AB|=
|x2-x1|2+|y2-y1|2

如果某圆的圆心为(0,0),半径为r.设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到|PO|=r,即
(x-0)2+(y-0)2
=r
,整理得:x2+y2=r2.我们称此式为圆心在精英家教网原点,半径为r的圆的方程.
(1)直接应用平面内两点间距离公式,求点A(1,-3),B(-2,1)之间的距离;
(2)如果圆心在点P(2,3),半径为3,求此圆的方程.
(3)方程x2+y2-12x+8y+36=0是否是圆的方程?如果是,求出圆心坐标与半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、已知⊙O1和⊙O2的半径分别为3、5,⊙O1上一点A与⊙O2的圆心O2的距离等于6,那么下列关于⊙O1和⊙O2的位置关系的结论一定错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,E是矩形ABCD的边CD上的一点,BE交AC于点O,已知△OCE和△OBC的面积分别为2和8.
(1)求△OAB和四边形AOED的面积;
(2)若BE⊥AC,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

同步练习册答案