【题目】如图,等腰△ABC和等腰△ACD有一条公共边AC,且顶角∠BAC和顶角∠CAD都是45°.将一块三角板中用含45°角的顶点与A点重合,并将三角板绕A点按逆时针方向旋转.
(1)当三角板旋转到如图1的位置时,三角板的两边与等腰三角形的两底边分别相交于M、N两点,求证:AM=AN;
(2)当三角板旋转到如图2的位置时,三角板的两边与等腰三角形两底边的延长线分别相交于M、N两点,(1)的结论还成立吗?请说明理由.
【答案】(1)证明见解析;(2)成立.理由见解析.
【解析】试题分析:(1)由∠BAC=∠CAD=∠MAN=45°得∠BAC-∠MAC=∠MAN-∠MAC即∠BAM=∠CAN,证△BAM≌△CAN得AM=AN;
(2)与(1)同理可得.
试题解析:(1)∵∠BAC=∠CAD=∠MAN=45°,
∴∠BAC-∠MAC=∠MAN-∠MAC,
∴∠BAM=∠CAN,
在△BAM和△CAN中,
∵,
∴△BAM≌△CAN,
∴AM=AN;
(2)成立.
∵∠BAC=∠CAD=∠MAN=45°,
∴∠BAC+∠MAC=∠MAN+∠MAC,
∴∠BAM=∠CAN,
在△BAM和△CAN中,
∵,
∴△BAM≌△CAN(AAS),
∴AM=AN.
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0)(2,1),(3,2),(3,1)(3,0),……,根据这个规律探索可得,第102个点的坐标为______________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个事件,事件A:掷一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中.则( )
A.只有事件A是随机事件;B.只有事件B是随机事件
C.事件A和B都是随机事件;D.事件A和B都不是随机事件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.
方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;
方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)请你求出投资方案一可获得的最大年利润;(用含a的代数式表示)
(3)经过测算投资方案二可获得的最大年利润为500万美元,请你求出此时需要年销售乙产品多少件?
(4)如果你是企业的决策者,为了获得最大收益,你会选择哪个投资方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果抛物线y=-x2+bx+c经过A(0,-2),B(-1,1)两点,那么此抛物线经过
A. 第一、二、三、四象限 B. 第一、二、三象限
C. 第一、二、四象限 D. 第二、三、四象限
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com