精英家教网 > 初中数学 > 题目详情
9.已知:如图,△ABC中,DE∥BC,EF∥AB,BE平分∠ABC.
(1)求证:四边形BFED是菱形.
(2)若AB=BC=8,求菱形BFED的周长.

分析 (1)易证四边形BFED是平行四边形,再结合已知条件证明邻边BD=DE,即可证明四边形BFED是菱形;
(2)易证△ADE和△EFC是等腰三角形,由菱形和等腰三角形的性质可得AD=DE,EF=CF,所以可证明菱形BFED的周长=AB+BC问题得解.

解答 (1)证明:
∵DE∥BC,EF∥AB,
∴四边形BFED是平行四边形,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∵DE∥BC,
∴∠DEB=∠EBC,
∴∠ABE=∠DEB,
∴BD=DE,
∴四边形BFED是菱形;
(2)∵AB=BC=8,
∴∠A=∠C,
∵DE∥BC,
∴∠DEA=∠C,
∴DA=DE,
同理可证:FE=FC,
∴BD+DE+BF+EF=BD+AD+BF+FC=AB+BC=16.

点评 本题考查了平行四边形的判定和性质、菱形的判定和性质以及等腰三角形的判定和性质,熟记和特殊几何图形有关的判定和性质解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,M、N是平行四边形ABCD对角线BD上两点.BM=DN,求证:四边形AMCN为平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长一十二步,问阔及长各几步?”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽各是多少步?”若设矩形田地的长为x步,则可列方程为x(x-12)=864.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.感知:如图①,在△ABC中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°,求∠DAE度数;
探究:如图②,在△ABC中,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC,其他条件不变,求∠DFE的度数”;
拓展:如图③,若把△ABC变成四边形ABEC,把AE⊥BC变成EA平分∠BEC,其他条件不变,∠DAE的度数是否变化,并且说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)解方程:x2-2x-1=0.
(2)计算:($\sqrt{48}$-4$\sqrt{\frac{1}{8}}$)-(3$\sqrt{\frac{1}{3}}$-2$\sqrt{0.5}$)
(3)计算:-42+|$\sqrt{2}-2$|-(2002-$\sqrt{3}$)0+$\frac{1}{1+\sqrt{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.利民水果超市销售一种时令水果,第一周的进价是每千克30元,销量是200千克;第二周的进价是每千克25元,销量是400千克.已知第二周的售价比第一周的售价每千克少10元,第二周比第一周多获利2000元.
(1)求第二周该水果每千克的售价是多少元?
(2)第三周该水果的进价是每千克20元.经市场调查发现,如果第三周的售价比第二周降低t%,则销量会比第二周增加 5t%.请写出第三周获利y(元)与t的函数关系式,并求出t为何值时,y最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知如图,点O为?ABCD对角线BD的中点,EF过点O与AD、BC分别相交于点E、F.
(1)求证:△EOD≌△FOB;
(2)若B、D两点关于EF对称,连结BE、DF,请判断四边形EBFD为何种四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.
(1)求证:四边形BCED是平行四边形;
(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.

查看答案和解析>>

同步练习册答案