精英家教网 > 初中数学 > 题目详情
用一段长为20米的篱笆围成一个一边靠墙的矩形菜园,墙长为12米,这个矩形的长宽各为多少时,菜园的面积最大,最大面积是多少?
设矩形的宽为xm,面积为Sm2,根据题意得:
S=x(20-2x)
=-2x2+20x
=-2(x-5)2+50,
当x=5时,AB=CD=5,BC=10<12,
∴x=5符合题意,
∴x=5m时,菜园面积最大,最大面积是50m2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-6,0)、B(2,0),与y轴交于点C(0,-6).
(1)求此抛物线的函数表达式,写出它的对称轴;
(2)若在抛物线的对称轴上存在一点M,使△MBC的周长最小,求点M的坐标;
(3)若点P(0,k)为线段OC上的一个不与端点重合的动点,过点P作PDCM交x于点D,连接MD、MP,设△MPD的面积为S,求当点P运动到何处时S的值最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,其中B(1,0),C(0,-3).
(Ⅰ)求二次函数y=ax2+bx+c(a≠0)的解析式;
(Ⅱ)设抛物线的顶点为D,求△ABD的面积;
(Ⅲ)求使y≥-3的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,-2),过B、C画直线.
(1)求二次函数的解析式;
(2)点P在x轴负半轴上,且PB=PC,求OP的长;
(3)点M在二次函数图象上,过M向直线BC作垂线,垂足为H.若M在y轴左侧,且△CHM△BOC,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

衢江区某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价 w1与上市时间t的关系用图甲的一条折线表示;西红柿的种植成本 w2与上市时间t的关系用图乙表示的抛物线段表示.
(1)求出图甲表示的市场售价 w1与时间t的函数关系式;
(2)求出图乙表示的种植成本 w2与时间t的函数关系式;
(3)市场售价减去种植成本为纯收益,当0<t≤200时,何时上市西红柿纯收益最大?(售价与成本单位:元/百千克,时间单位:天)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=
2
3
x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=______;△A1B2A2的边长=______;△A2007B2008A2008的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BC是⊙O的直径,点A在圆上,且AB=AC=4.P为AB上一点,过P作PE⊥AB分别交BC、OA于E、F.
(1)设AP=1,求△OEF的面积;
(2)设AP=a(0<a<2),△APF、△OEF的面积分别记为S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一个实数a,使S<
15
3
?若存在,求出一个a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

同步练习册答案