14£®ÇຣÐÂÎÅÍøѶ£º2016Äê2ÔÂ21ÈÕ£¬Î÷ÄþÊÐÊ×ÌõÂ̵ÀÃâ·Ñ¹«¹²×ÔÐгµ×âÁÞϵͳÕýʽÆôÓã®ÊÐÕþ¸®½ñÄêͶ×ÊÁË112ÍòÔª£¬½¨³É40¸ö¹«¹²×ÔÐгµÕ¾µã¡¢ÅäÖÃ720Á¾¹«¹²×ÔÐгµ£®½ñºó½«ÖðÄêÔö¼ÓͶ×Ê£¬ÓÃÓÚ½¨ÉèÐÂÕ¾µã¡¢ÅäÖù«¹²×ÔÐгµ£®Ô¤¼Æ2018Ä꽫Ͷ×Ê340.5ÍòÔª£¬Ð½¨120¸ö¹«¹²×ÔÐгµÕ¾µã¡¢ÅäÖÃ2205Á¾¹«¹²×ÔÐгµ£®
£¨1£©ÇëÎÊÿ¸öÕ¾µãµÄÔì¼ÛºÍ¹«¹²×ÔÐгµµÄµ¥¼Û·Ö±ðÊǶàÉÙÍòÔª£¿
£¨2£©ÇëÄãÇó³ö2016Äêµ½2018ÄêÊÐÕþ¸®ÅäÖù«¹²×ÔÐгµÊýÁ¿µÄÄêƽ¾ùÔö³¤ÂÊ£®

·ÖÎö £¨1£©·Ö±ðÀûÓÃͶ×ÊÁË112ÍòÔª£¬½¨³É40¸ö¹«¹²×ÔÐгµÕ¾µã¡¢ÅäÖÃ720Á¾¹«¹²×ÔÐгµÒÔ¼°Í¶×Ê340.5ÍòÔª£¬Ð½¨120¸ö¹«¹²×ÔÐгµÕ¾µã¡¢ÅäÖÃ2205Á¾¹«¹²×ÔÐгµ½ø¶øµÃ³öµÈʽÇó³ö´ð°¸£»
£¨2£©ÀûÓÃ2016ÄêÅäÖÃ720Á¾¹«¹²×ÔÐгµ£¬½áºÏÔö³¤ÂÊΪx£¬½ø¶ø±íʾ³ö2018ÄêÅäÖù«¹²×ÔÐгµÊýÁ¿£¬µÃ³öµÈʽÇó³ö´ð°¸£®

½â´ð ½â£º£¨1£©Éèÿ¸öÕ¾µãÔì¼ÛxÍòÔª£¬×ÔÐгµµ¥¼ÛΪyÍòÔª£®¸ù¾ÝÌâÒâ¿ÉµÃ£º
$\left\{{\begin{array}{l}{40x+720y=112}\\{120x+2205y=340.5}\end{array}}\right.$
½âµÃ£º$\left\{{\begin{array}{l}{x=1}\\{y=0.1}\end{array}}\right.$
´ð£ºÃ¿¸öÕ¾µãÔì¼ÛΪ1ÍòÔª£¬×ÔÐгµµ¥¼ÛΪ0.1ÍòÔª£®

£¨2£©Éè2016Äêµ½2018ÄêÊÐÕþ¸®ÅäÖù«¹²×ÔÐгµÊýÁ¿µÄÄêƽ¾ùÔö³¤ÂÊΪa£®
¸ù¾ÝÌâÒâ¿ÉµÃ£º720£¨1+a£©2=2205
½â´Ë·½³Ì£º£¨1+a£©2=$\frac{49}{16}$£¬
¼´£ºa1=$\frac{3}{4}$=75%£¬a2=-$\frac{11}{4}$£¨²»·ûºÏÌâÒ⣬ÉáÈ¥£©
´ð£º2016Äêµ½2018ÄêÊÐÕþ¸®ÅäÖù«¹²×ÔÐгµÊýÁ¿µÄÄêƽ¾ùÔö³¤ÂÊΪ75%£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þÔªÒ»´Î·½³ÌµÄÓ¦ÓÃÒÔ¼°Ò»Ôª¶þ´Î·½³ÌµÄÓ¦Óã¬ÕýÈ·µÃ³öµÈʽÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªµãP£¨a£¬b£©ÊÇ·´±ÈÀýº¯Êýy=$\frac{1}{x}$ͼÏóÉÏÒìÓڵ㣨-1£¬-1£©µÄÒ»¸ö¶¯µã£¬Ôò$\frac{2}{1+a}$+$\frac{2}{1+b}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£¾ÙÐдº¼¾Ô˶¯»á£¬ÐèÒªÔÚ³õÈýÄ꼶ѡȡ1»ò2Ãûͬѧ×÷Ϊ־ԸÕߣ¬³õÈý£¨5£©°àµÄСÐÜ¡¢Ð¡ÀֺͳõÈý£¨6£©°àµÄС졢С¹Ü4Ãûͬѧ±¨Ãû²Î¼Ó£®
£¨1£©Èô´ÓÕâ4ÃûͬѧÖÐËæ»úÑ¡È¡1ÃûÖ¾Ô¸Õߣ¬Ôò±»Ñ¡ÖеÄÕâÃûͬѧǡºÃÊdzõÈý£¨5£©°àͬѧµÄ¸ÅÂÊÊÇ$\frac{1}{2}$£»
£¨2£©Èô´ÓÕâ4ÃûͬѧÖÐËæ»úÑ¡È¡2ÃûÖ¾Ô¸Õߣ¬ÇëÓÃÁоٷ¨£¨»­Ê÷״ͼ»òÁÐ±í£©ÇóÕâ2ÃûͬѧǡºÃ¶¼ÊdzõÈý£¨6£©°àͬѧµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®²ÊƱÖн±µÄ¸ÅÂÊÊÇ1%£¬ÔòÂò100ÕŲÊƱһ¶¨»áÖн±
B£®Ò»×éÊý¾ÝµÄÖÐλÊý¾ÍÊÇÕâ×éÊý¾ÝÕýÖмäµÄÊý
C£®Ð¬µêÀÏ°å½ø»õʱ×î¹ØÐĵÄÊÇЬÂëµÄÖÚÊý
D£®¼×ÿ´Î¿¼ÊԳɼ¨¶¼±ÈÒҺã¬Ôò·½²îS¼×2£¼SÒÒ2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k£¾0£©Í¼ÏóÉϵÄÁ½µã£¬Èôx1£¼0£¼x2£¬ÔòÓУ¨¡¡¡¡£©
A£®y2£¼0£¼y1B£®y1£¼y2£¼0C£®y1£¼0£¼y2D£®y2£¼y1£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªµã£¨-1£¬y1£©£¬£¨2£¬y2£©£¬£¨3£¬y3£©ÔÚ·´±ÈÀýº¯Êýy=$\frac{-{k}^{2}-1}{x}$µÄͼÏóÉÏ£¬ÔòÓá°£¼¡±Á¬½Óy1£¬y2£¬y3Ϊy2£¼y3£¼y1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÓÉÈô¸É¸öÏàͬµÄСÕý·½Ìå×éºÏ¶ø³ÉµÄÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò×é³ÉÕâ¸ö¼¸ºÎÌåµÄСÕý·½ÐθöÊýÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬µãCÔÚ¡ÑOÉÏ£¬¹ýµãCµÄÇÐÏßÓëABµÄÑÓ³¤Ïß½»ÓÚµãP£¬Á¬½ÓAC£¬Èô¡ÏA=30¡ã£¬PC=3£¬ÔòBPµÄ³¤Îª$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ÆË㣺£¨2-$\frac{3}{2}$+|$\frac{1}{3}$-2|£©¡Á£¨-6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸