精英家教网 > 初中数学 > 题目详情
在正方形ABCD中,将一块直角三角板的直角顶点放在对角线AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别交线段AB、BC于D′、E两点.如图1是旋转三角板后所得到图形中的1种情况.
(1)三角板绕点P旋转,观察线段PF和PE之间有什么数量关系?并结合如图1加以证明;
(2)若将三角板的直角顶点放在对角线AC上的M处,且AM:MC=2:5,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合如图2加以证明.

精英家教网

精英家教网
(1)连接PB.
∵四边形ABCD是正方形,P是AC的中点,
∴CP=PB,BP⊥AC,∠ABP=
1
2
∠ABC=45°,
即∠ABP=∠ACB=45°,
又∵∠FPB+∠BPE=∠BPE+∠CPE=90°,
∴∠FPB=∠CPE,即△PBF≌△PCE,
∴PD′=PE;

(2)MD:ME=2:5.
过点M作MF⊥AB,MH⊥BC,垂足分别是F、H,

精英家教网
则MHAB,MFBC,即四边形BFMH是平行四边形.
∵∠B=90°,
∴?BFMH是矩形,
即∠FMH=90°,MF=BH,
∵BH:HC=AM:MC=2:5,而HC=MH,
MF
MH
=2:5,
∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH.因为∠FD=∠MHE=90°,
∴△MDF△MHE,
MD
ME
=
MF
MH
=2:5.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案