精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点DE在⊙O上,∠A=2BDE,点CAB的延长线上,∠C=ABD

1)求证:CE是⊙O的切线;

2)若⊙O的半径长为5BF=2,求EF的长.

【答案】(1)证明见解析;(2)

【解析】

1)连接OE,易得∠ADB=90°,证明∠BOE=A,联立∠C=ABD可求证.

2)连接BE,根据同弧所对的圆周角先证明BEFBOE,根据相似三角形的性质求出EF的长度.

解:(1)连接OE

AB 的直径,

∴∠ADB=90°

∴∠A+ABD=90°

由图可知∠BOE=2BDE

又∵∠A=2BDE

∴∠A=BOE

∵∠C=ABD

∴∠BOE+C=90°

∴OE⊥EC

CE是⊙O的切线.

2)连接BE

有图可知∠BED=A=BOE

△BEF∽△BOE

∵OB=OE=5,BF=2

∴BE=EF

∴EF2=OE·BF=10

∴EF=

故答案为:(1)证明见解析;(2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=12,点EBC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AFEF,图中阴影部分的面积是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示,根据图象信息知,点A的坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这八个正方形分成面积相等的两部分,则该直线的解析式为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴交于AB两点,OCAB于点CP是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为(  )

A.B.1C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019新型冠状病毒,因武汉病毒性肺炎病例而被发现,2020112日被世界卫生组织命名“2019-nCoV”.冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米=1 10-9米),125纳米用科学记数法表示等于( )米

A.1.2510-10B.1.2510-11C.1.25 10-8D.1.2510-7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,以BC为直径作⊙ OAC于点E,过点EAB的垂线交AB于点F,交CB的延长线于点G

1)求证:EG是⊙O的切线;

2)若BG=OBAC=6,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据完全平方公式可以作如下推导(ab都为非负数)

a-2+b=(-)2≥0 a-2+b≥0

a+b≥2

其实,这个不等关系可以推广,

… …

(以上an都是非负数)

我们把这种关系称为:算术几何均值不等式

例如:x为非负数时,,则有最小值.

再如:x为非负数时,x+x+

我们来研究函数:

1)这个函数的自变量x的取值范围是

2)完成表格并在坐标系中画出这个函数的大致图象;

x

-3

-2

-1

1

2

3

y

3

5

3)根据算术几何均值不等式,该函数在第一象限有最 值,是

4)某同学在研究这个函数时提出这样一个结论:当x>a时,yx增大而增大,a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的⊙OBC于点D,过点DDEACAC于点EAC的反向延长线交⊙O于点F

(1)试判断直线DE与⊙O的位置关系,并说明理由;

(2)若∠C30°,⊙O的半径为6,求弓形AF的面积.

查看答案和解析>>

同步练习册答案