精英家教网 > 初中数学 > 题目详情
(2007•开封)已知平面直角坐标系上的三个点O(0,0)、A(-1,1)、B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A、B的对应点A1、B1的坐标分别是A1    ,B1   
【答案】分析:把△ABO绕点O按顺时针方向旋转135°,就是把它上面的各个点按顺时针方向旋转135度.点A在第二象限的角平分线上,且OA=,正好旋转到x轴正半轴.则A点的坐标是(,0);点B在x轴的负半轴上,旋转到第一象限的角平分线上,且OB1=1,则根据三角函数得到B1的坐标是
解答:解:∵A的坐标是(-1,1),
∴OA=,且A1在x轴正半轴上,
∴A1点的坐标是
∵B的坐标是(-1,0),
∴OB=1,且B1在第一象限的角平分线上,
∴得到B1的坐标是
点评:解答本题要能确定A、B的位置,只有这样才能确定点A、B的对应点A1、B1的位置,求出坐标.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年中考数学预考题(解析版) 题型:解答题

(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年河北省廊坊市安次区九年级网络试卷设计大赛数学试卷(1)(解析版) 题型:解答题

(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源:2005年福建省厦门市中考数学试卷(课标卷)(解析版) 题型:解答题

(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

同步练习册答案