精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,

①若AD是∠BAC的平分线,则∠_______=_______=________

②若AE=CE,则BEAC边上的___________________

③若CFAB边上的高,则∠____=______=90°,CF__________AB

【答案】 BAD CAD BAC 中线; AFC BFC

【解析】

①根据三角形的角平分线和角平分线的定义即可解答;
②根据三角形中线和线段中线的定义解答;
③根据三角形的高和垂直的定义解答.

ABC中,
①若AD是∠BAC的平分线,则∠BAD=CAD=BAC;
②若AE=CE,则BEAC边上的中线;
③若CFAB边上的高,则∠AFC=BFC=90°,CFAB.
故答案为:BAD,CAD,BAC,中线,AFC,BFC,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如下图所示,直线y=-x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.

(1)求出点C的坐标;

(2)OQC是等腰直角三角形,则t的值为________;

(3)CQ平分OAC的面积,求直线CQ对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1)求证:CF=AD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)

平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.

(解决问题)

(1)求点A(-2.4),B(+-)的勾股值[A],[B];

(2)若点Mx轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧( 是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD各顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).

(1)确定这个四边形的面积,你是怎样做的?

(2)如果把四边形ABCD各顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有三个有理数a,b,c,已知a=,(n为正整数)且a与b互为相反数,b与c互为倒数.

(1)当n为奇数时你能求出a,b,c各是几吗?

(2)当n为偶数时,你能求a,b,c三数吗?若能请算出结果,不能请说明理由.

(3)根据(1)中的结论,求:ab﹣b﹣(b﹣c)2015的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上任一点,射线OD和射线OE分别平分AOCBOC

(1)填空:与AOE互补的角是

(2)若AOD=36°,求DOE的度数;

(3)当AOD=x°时,请直接写出DOE的度数.

查看答案和解析>>

同步练习册答案