精英家教网 > 初中数学 > 题目详情
如图,AD⊥BC于点D,∠1=∠2,∠CDG=∠B,试说明EF⊥BC的理由.
分析:先由∠CDG=∠B证明DG∥AB,所以得到∠1=∠DAB,又∠1=∠2,所以∠2=∠3,再次推出EF∥AD,即得到∠EFB=∠ADB,已知AD⊥BC于点D,故得到EF与BC的位置关系是垂直.
解答:证明:∵∠CDG=∠B(已知),
∴DG∥AB(同位角相等,两直线平行),
∴∠1=∠3(两直线平行,内错角相等),
又∵∠1=∠2(已知),
∴∠2=∠3,
∴EF∥AD(内同位角相等,两直线平行),
∴∠EFB=∠ADB(两直线平行,同位角相等),
又AD⊥BC于点D(已知),
∴∠ADB=90°,
∴∠EFB=∠ADB=90°,
∴EF⊥CB.
点评:此题考查的知识点是平行线的判定与性质,关键是由已知证明EF∥AD,再证出∠EFB=∠ADB=90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=
70°
70°

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(浙江义乌卷)数学(解析版) 题型:填空题

如图,AD⊥BC于点D,D为BC的中点,连结AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=      °;

 

 

查看答案和解析>>

同步练习册答案