精英家教网 > 初中数学 > 题目详情
19.如图,是某几何体的三视图,根据图中所标的数据求得该几何体的体积为(  )
A.120πB.132πC.136πD.236π

分析 根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.

解答 解:由三视图可知,几何体是由大小两个圆柱组成,
故该几何体的体积为:π×22×2+π×42×8
=8π+128π
=136π.
故选:C.

点评 本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.由若干个相同的小正方体搭成一个几何体,从上面看,它的形状图如图所示,小正方形中的数字表示该位置上的小正方体的个数,则从左面看这个几何体的形状是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在网格线上,线段A、B在格点上.
(1)将线段AB绕点O逆时针旋转90°得到线段A1B1,试在图中画出线段A1B1
(2)在(1)的条件下,线段A2B2与线段A1B1关于原点O成中心对称,请在图中画出线段A2B2
(3)在(1)、(2)的条件下,点P是此平面直角坐标系内的一点,当以点A、B、B2、P为顶点的四边形为平行四边形时,请你直接写出点P的坐标:(1,-4)、(3,0)、(1,4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列分式运算,正确的是(  )
A.($\frac{3x}{5y}$)2=$\frac{3{x}^{2}}{5{y}^{2}}$B.$\frac{1}{x-y}-\frac{1}{y-x}$=0C.$\frac{1}{3x}+\frac{1}{3y}=\frac{1}{3(x+y)}$D.($\frac{{x}^{2}}{-y}$)3=-$\frac{{x}^{6}}{{y}^{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=ax2+bx-4与x轴交于点A(-2,0)、B(4,0),与y轴交于点C,过点C作x轴的平行线交抛物线于点D,连接AC,作直线BC.
(1)求抛物线y=ax2+bx-4的表达式;
(2)如图2,点E(x,0)是线段OB上的一点,过点E作与x轴垂直的直线与直线BC交于点F,与抛物线交于点G.
①线段FG的长是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连接CG,当∠DCG=∠ACO时,求点G的坐;
(3)若点P是直线BC下方的抛物线上的一点,点Q在y轴上,点M在线段BC上,当以C,P,Q,M为顶点的四边形是菱形时,直接写出菱形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,二次函数y=$\frac{3}{4}$x2+bx+c与一次函数y=$\frac{3}{4}$x-3的图象都经过x轴上点A(4,0)和y轴上点B(0,-3),过动点M(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点P.
(1)求b,c的值;
(2)点M在运动的过程中,能否使△PBC为直角三角形?如果能,求出点P的坐标;如果不能,请说明理由;
(3)如图2,过点P作PD⊥AB于点,设△PCD的面积为S1,△ACM的面积为2,若$\frac{{S}_{1}}{{S}_{2}}$=$\frac{36}{25}$,
①求m的值;
②如图3,将线段OM绕点O顺时针旋转得到OM′,旋转角为α(0°<α<90°),连接M'A、M'B,求M'A+$\frac{2}{3}$M'B的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-(x-3)2+9上一点,且在x轴上方,则△BCD面积的最大值为15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:(-1)2017+|$\sqrt{3}$-3|+(tan30°)-1
(2)解方程组:$\left\{\begin{array}{l}{x-y=5}\\{2x+y=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,二次函数y=ax2-2ax+3(a≠0)的图象与x、y轴交于A、B、C三点,
其中AB=4,连接BC.
(1)求二次函数的对称轴和函数表达式;
(2)若点M是线段BC上的动点,设点M的横坐标为m,过点M作MN∥y轴交抛物线于点N,求线段MN的最大值;
(3)当0≤x≤t时,则3≤y≤4,直接写出t的取值范围.

查看答案和解析>>

同步练习册答案