精英家教网 > 初中数学 > 题目详情
如图,已知直线y=x与二次函数y=x2+bx+c的图象交于点A、O,(O是坐标原点),点P为二次函数图象的顶点,OA=,AP的中点为B.
(1)求二次函数的解析式;
(2)求线段OB的长;
(3)若射线OB上存在点Q,使得△AOQ与△AOP相似,求点Q的坐标.

【答案】分析:(1)由点A在直线y=x上,可知A的横纵坐标相等,又因为OA=3,所以可以求出A的坐标,再把O和A的坐标代入y=x2+bx+c,求出b和c的值即可求出函数的解析式;
(2)用配方法求出顶点P的坐标,再利用勾股定理求出OP的长和AP的长,利用勾股定理的逆定理即可判定三角形AOP的形状,进而求出OB的长;
(3)若△AOQ与△AOP相似,则①△AOP∽△OQA或②△AOP∽△OAQ,根据相似三角形的性质得到比例式,求出满足题意的OQ值即可.
解答:解:(1)∵点A在直线y=x上,且OA=3
∴A点的坐标是(3,3,)
∵点O(0,0),A(3,3)在函数y=x2+bx+c的图象上,

解得:
故二次函数的解析式是y=x2-2x;

(2)∵y=x2-2x=(x-1)2-1,
∴顶点P的坐标为(1,-1)
∴PO==,AP=2
∴AO2+PO2=AP2
∴∠AOP=90°,
∴△AOP是直角三角形,
∵B为AP的中点,
∴OB=

(3)∵∠AOP=90°,B为AP的中点,
∴OB=AB,
∴∠AOB=∠OAB,
若△AOQ与△AOP相似,
则①△AOP∽△OQA时,

∴OQ1=
②△AOP∽△OAQ时,

∴OQ2=2
∵B点的坐标为(2,1),
∴Q1),Q2(4,2)
即点Q的坐标分别是Q1),Q2(4,2).
点评:本题考查了用待定系数法求二次函数的解析式、二次函数的顶点坐标、勾股定理以及逆定理的运用以及相似三角形的判定和性质,解题时也要注意分类讨论数学思想的运用,题目的综合性很强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案