精英家教网 > 初中数学 > 题目详情
15.我们把三条边都相等的三角形叫做等边三角形,并且可以证明等边三角形的三个内角都相等,并且每一个角都等于60°.小华分别在等边△ABC的边AB、AC上取点D、E,使AD=CE,连接BE、CD交于点O,于是,他说发现了下面的结论:
(1)BE与CD一定相等;你认为他发现的结论正确吗?请加以说明.
(2)如果点D、E分别在边AB、AC上移动(不与A、B、C重合),且AD=CE,那么,∠COE的大小会发生变化吗?请说明理由.

分析 (1)由等边三角形的性质得出∠A=∠BCE=∠ABC=60°,AC=BC,由SAS证明△BCE≌△CAD,得出对应边相等即可;
(2)由全等三角形的性质得出∠CBE=∠ACD,由三角形的外角性质得出∠COE=∠CBE+∠BCO=∠ACB=60°即可.

解答 解:(1)BE=CD正确;理由如下:
∵△ABC是等边三角形,
∴∠A=∠BCE=∠ABC=60°,AC=BC,
在△BCE和△CAD中,$\left\{\begin{array}{l}{BC=AC}&{\;}\\{∠BCE=∠A}&{\;}\\{CE=AD}&{\;}\end{array}\right.$,
∴△BCE≌△CAD(SAS),
∴BE=CD;
(2)∠COE的大小不会发生变化,∠COE=60°;理由如下:
由(1)得:△BCE≌△CAD,
∴∠CBE=∠ACD,
∵∠COE=∠CBE+∠BCO=∠ACD+∠BCO=∠ACB=60°.

点评 本题考查了等边三角形的性质、全等三角形的判定与性质、三角形的外角性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.下列表情中,是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,在平面直角坐标系中,已知一次函数y=$\frac{1}{2}$x+1的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.
(1)求边AB的长;
(2)求点C,D的坐标;
(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,以边长为$\sqrt{2}$的正方形ABCD的对角线所在直线建立平面直角坐标系,抛物线y=x2+bx+c经过点B与直线AB只有一个个公共点.
(1)求直线AB的解析式;
(2)求抛物线y=x2+bx+c的解析式;
(3)若点P为(2)中抛物线上一点,过点P作PM⊥x轴于点M,问是否存在这样的点P,使△PMC成为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(4)过点D的直线y=mx+1与抛物线y=x2+bx+c交点的横坐标分别是e和f,其中e<-$\frac{1}{2}$,f>3,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向中点F,G运动.连接PB,QE,设运动时间为t(s).
(1)求证:四边形PEQB为平行四边形;
(2)填空:
①当t=2s时,四边形PBQE为菱形;
②当t=0或4s时,四边形PBQE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,AB=AC,P为△ABC内一点,且∠BAP=70°,∠ABP=40°.
(1)求证:△ABP是等腰三角形.
(2)在BC上方,以BC为边作等边三角形BCE,连接EA并延长交BC于M,连接PC,当∠PCB=30°时,求证:PC=EA.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知△ABC中,∠C=90°,D是斜边AB的中点,点E、F分别在AC、BC上,且DE⊥DF,连接EF.
(1)猜想AE、BF、EF之间存在何种等量关系,并证明你的结论;
(2)如图2,若点E、F分别在AC、CB的延长线上,其它条件不变,(1)中结论还成立吗?若不成立,写出你认为正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.观察下列按照一定规律写出的各行的数:
第1行:1,1;
第2行:1,2,1;
第3行:1,3,3,1;
第4行:1,4,6,4,1;
….
(1)按照上面的规律写下去,请你写出第5行的这列数1,5,10,10,5,1;
(2)第n行的所有数的和是2n(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知:△ABC是等边三角形,分别在AC、BC边上取点E、F,使AE=CF,BE、AF相交于点D.求证:
(1)△ABE≌△ACF.
(2)∠BDF=60°.

查看答案和解析>>

同步练习册答案