精英家教网 > 初中数学 > 题目详情
(2012•莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是(  )
分析:连接AE,由E为BC的中点,得到BE=CE,再由BC=2AD,可得出AD=BE=CE,再由AD与BC平行,利用一组对边平行且相等的四边形为平行四边形可得出四边形ABED与四边形AECD都为平行四边形,再由∠BCD=90°,利用有一个角为直角的平行四边形是矩形得出四边形AECD为矩形,利用矩形的四个角为直角可得出AE垂直于BC,得到AE垂直平分BC,利用线段垂直平分线定理得到AB=AC,即△ABC为等腰三角形,故选项A正确,不合题意;
由EF为△ABC的中位线,利用中位线定理得到EF平行于AC,且等于AC的一半,进而得到四边形AFEM为平行四边形,再由AF等于AB的一半,即为AC的一半,得到邻边AF=EF,可得出四边形AFEM为菱形,选项B正确,不合题意;
过F作FN垂直于BC,可得出FN与AE平行,由F为AB的中点,得到N为BE的中点,即FN为△ABE的中位线,得到FN等于AE的一半,即为DC的一半,再由BE=AD,可得出△BEF与△ADC底相等,高FN为CD的一半,可得出△BEF的面积为△ADC面积的一半,选项C正确,不合题意;
而DE不一定为角平分线,选项D错误,符合题意.
解答:解:连接AE,如右图所示,
∵E为BC的中点,
∴BE=CE=
1
2
BC,又BC=2AD,
∴AD=BE=EC,又AD∥BC,
∴四边形ABED为平行四边形,四边形AECD为平行四边形,
又∵∠DCB=90°,
∴四边形AECD为矩形,
∴∠AEC=90°,即AE⊥BC,
∴AE垂直平分BC,
∴AB=AC,即△ABC为等腰三角形,
故选项A不合题意;
∵E为BC的中点,F为AB的中点,
∴EF为△ABC的中位线,
∴EF∥AC,EF=
1
2
AC,
又∵四边形ABED为平行四边形,
∴AF∥ME,
∴四边形AFEM为平行四边形,
又∵AF=
1
2
AB=
1
2
AC=EF,
∴四边形AFEM为菱形,
故选项B不合题意;
过F作FN⊥BC于N点,可得FN∥AE,
又∵F为AB的中点,
∴N为BE的中点,
∴FN为△ABE的中位线,
∴FN=
1
2
AE,
又∵AE=DC,BE=AD,
∴S△BEF=
1
2
S△ACD
故选项C不合题意;
DE不一定平分∠CDF,
故选项D符合题意.
故选D.
点评:此题考查了直角梯形的性质,涉及的知识有:矩形的判定与性质,平行四边形的判定与性质,三角形的中位线定理,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•莱芜)如图,在数轴上点A表示的数可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莱芜)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莱芜)如图,在菱形ABCD中,AB=2
3
,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.
(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);
(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=
3
S△MDF时,求动点M经过的弧长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莱芜)如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案