精英家教网 > 初中数学 > 题目详情

.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,

AD=2,BC=4,则梯形的面积为 (  )

A.3B.4
C.6D.8

A

解析考点:等腰梯形的性质.
分析:过A作底边的高,根据∠B=45°,AD=2,BC=4可求出高的长,从而可求出面积.
解:过A作AE⊥BC交BC于E点.
∵四边形ABCD是等腰梯形.
∴BE=(4-2)÷2=1.
∵∠B=45°,
∴AE=BE=1.
∴梯形的面积为:×(2+4)×1=3.
故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周长为40cm,则CD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,等腰梯形ABCD中,AB∥CD,AB=4,CD=9,∠C=60°.
(1)求AD的长;
(2)若动点P从点C出发沿CD方向向终点D运动(如图②),在P点运动的过程中,△ABP的面积改变了吗?若改变,请说明理由;若没有改变,那么△ABP的面积为
 

(3)在(2)的条件下,过B作BH⊥AP于H(如图③),若BH=2
2
,则AP=
 

(4)在(2)的条件下,若动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达终点时,另一个动点也随之停止运动,过点Q作QM∥CD交BC于M(如图④),探究:四边形PDQM可能为菱形吗?若可能,请求出BM的长;若不可能,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等腰梯形OABC,OC=2,AB=6,∠AOC=120°,以O为圆心,OC为半径作⊙O,交OA于点D,动点P以每秒1个单位的速度从点A出发向点O移动,过点P作PE∥AB,交BC于点E.设P点运动的时间为t(秒).
(1)求OA的长;
(2)当t为何值时,PE与⊙O相切;
(3)直接写出PE与⊙O有两个公共点时t的范围,并计算,当PE与⊙O相切时,四边形PECO与⊙O重叠部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD,BC∥AD,AB=DC,BC=2AD=4cm,BD⊥CD,AC⊥AB,BC边的中点为E.
(1)判断△ADE的形状(简述理由),并求其周长.
(2)求AB的长.
(3)DE是否垂直平分AC?请说明理由.

查看答案和解析>>

科目:初中数学 来源:中华题王 数学 九年级上 (北师大版) 北师大版 题型:013

如图,等腰梯形AB-CD中,AD∠BC,AD=5,AB=6,BC=8,且AB∥DE,△DEC的周长是

[  ]

A.3

B.12

C.15

D.19

查看答案和解析>>

同步练习册答案