如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数 (x>0)的图象交EF于点B,则点B的坐标为____________.
(4,).
解析试题分析:根据旋转的性质得到∠P=∠POM=∠OGF=90°,再根据等角的余角相等可得∠PNO=∠GOA,然后根据相似三角形的判定方法即可得到△OGA∽△NPO;由E点坐标为(4,0),G点坐标为(0,2)得到OE=4,OG=2,则OP=OG=2,PN=GF=OE=4,由于△OGA∽△NPO,则OG:NP=GA:OP,即2:4=GA:2,可求得GA=1,可得到A点坐标为(1,2),然后利用待定系数法即可得到过点A的反比例函数解析式,再利用B点的横坐标为4和B点在得到B点坐标即可.
试题解析:∵矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,
∴∠P=∠POM=∠OGF=90°,
∴∠PON+∠PNO=90°,∠GOA+∠PON=90°,
∴∠PNO=∠GOA,
∴△OGA∽△NPO;
∵E点坐标为(4,0),G点坐标为(0,2),
∴OE=4,OG=2,
∴OP=OG=2,PN=GF=OE=4,
∵△OGA∽△NPO,
∴OG:NP=GA:OP,即2:4=GA:2,
∴GA=1,
∴A点坐标为(1,2),
设过点A的反比例函数解析式为
把A(1,2)代入得k=1×2=2,
∴过点A的反比例函数解析式为;
把x=4代入中得y=,
∴B点坐标为(4,).
考点:反比例函数综合题.
科目:初中数学 来源: 题型:填空题
如图,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD∥x轴,且AB=2,AD=4,点A的坐标为(2,6).若将矩形向下平移,使矩形的两个顶点恰好同时落在反比例函数的图象上,则k的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
如图,Rt△ABC中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数(x>0)的图象上运动,那么点B在函数 (填函数解析式)的图象上运动.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com