【题目】如图,∠AOB=90°,且OA、OB分别与反比例函数、的图象交于A、B两点,则tan∠OAB的值是______.
【答案】
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S△AOC=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得,然后由正切函数的定义求得答案.
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
∴,
∵点A在反比例函数的图象上,点B在反比例函数的图象上,
∴S△OBD=,S△AOC=2,
∴,
∴tan∠OAB=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.
(1)求k的值;
(2)根据图象,直接写出当x<0时不等式>﹣x+5的解集;
(3)求△AOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.
(1)求证:DF是⊙O的切线;
(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△MNQ中,MQ≠NQ.
(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;
(2)参考(1)中构造全等三角形的方法解决下面问题:
如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校现有九年级学生800名,为了了解这些学生的体质健康情况,学校在开学初从中随机抽取部分学生进行体能测试(测试结果分成优秀、良好、合格、不合格四个等级),并将测试结果绘制成如图所示两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次抽取的学生人数共有____名,在扇形统计图中,“合格”等级所对应的圆心角的度数是______;
(2)补全条形统计图;
(3)估计九年级学生中达到“合格”以上(含合格)等级的学生一共有多少名?
(4)若抽取的学生中,恰好有九年级(1)班的2名男生,2名女生,现要从这4人中随机抽取2人担任组长工作,请用列表法或树状图法求所抽取的2名学生中至少有1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.
(1)求k的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;
(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )
A. 签约金额逐年增加
B. 与上年相比,2019年的签约金额的增长量最多
C. 签约金额的年增长速度最快的是2016年
D. 2018年的签约金额比2017年降低了22.98%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以的边为直径作,点在上,是的弦,,过点作于点,交于点,过点作交的延长线于点.
(1)求证:是的切线;
(2)求证:;
(3),,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com