精英家教网 > 初中数学 > 题目详情
20.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.
请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?

分析 (1)一般用增长后的量=增长前的量×(1+增长率),2016年收到微信红包金额400(1+x)万元,在2016年的基础上再增长x,就是2017年收到微信红包金额400(1+x)(1+x),由此可列出方程400(1+x)2=484,求解即可.
(2)设甜甜在2017年六一收到微信红包为y元,则她妹妹收到微信红包为(2y+34)元,根据她们共收到微信红包484元列出方程并解答.

解答 解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x,
依题意得:400(1+x)2=484,
解得x1=0.1=10%,x2=-2.1(舍去).
答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;

(2)设甜甜在2017年六一收到微信红包为y元,
依题意得:2y+34+y=484,
解得y=150
所以484-150=334(元).
答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.

点评 本题考查了一元一次方程的应用,一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是②③.(写出所有正确说法的序号)
①当x=1.7时,[x]+(x)+[x)=6;
②当x=-2.1时,[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,Rt△ABC中,∠BAC=90°,D是BC边的中点,连接AD,过点A作AE∥BC,且AE=CD,连接EC.
(1)求证:四边形ADCE是菱形;
(2)如果AC=a,tan∠ABC=$\frac{1}{3}$,写出求菱形ADCE的面积的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图1,当∠ABC=45°时,求证:AD=DE;
(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:$\sqrt{8}$一4sin45°+(3-π)0+|-4|+${(-\frac{1}{2})}^{-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D

(1)求证:AO平分∠BAC;
(2)若BC=6,sin∠BAC=$\frac{3}{5}$,求AC和CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.“大雁塔”是西安市的标志性建筑、著名古迹、唐代永徽三年,玄樊为藏经典而修建,塔身七层,被视为古都西安的象征.民间人士道:“不到大雁塔,不算到西安”.小明在学习了锐角三角函数后,想用所学知识测量“大雁塔”的高度,小明在一栋高15米的建筑物底部D处侧得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“大雁塔”的高AB的长度.(结果精确到0.1米)(参考数据:sin37.5°≈0.6088,cos37.5°≈0.7934,tan37.5°≈0.7673.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为$\sqrt{2}$:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.

(1)如图①,求证:BA=BP;
(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求$\frac{CG}{GB}$的值;
(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则这个几何体可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案