精英家教网 > 初中数学 > 题目详情
已知等腰△ABC内接于半径为5厘米的⊙O,且BC=8厘米,则△ABC的面积等于    平方厘米.
【答案】分析:先过A作AD⊥BC于D,连接OB、OC,由于AB=AC,AD⊥BC,那么BD=CD,于是AD是BC的垂直平分线,又OB=OC,易证O在AD上,在Rt△OCD中,利用勾股定理可求OD,从而可求AD,进而可求△ABC的面积.
解答:解:①如右图所示,△ABC内接于⊙O,且AB=AC,且BC=8,
过A作AD⊥BC于D,连接OB、OC,
∵AB=AC,AD⊥BC,
∴BD=CD,
∴AD是BC的垂直平分线,
又∵OB=OC,
∴点O在BC垂直平分线上,
即点O在AD上,
在Rt△OCD中,OD==3,
∴AD=3+5=8,
∴S△ABC=BC•AD=32.

O在△ABC外时,连接OB、OA交BC于D,
由①知BD=4,AD⊥BC,
由勾股定理得:OB2=OD2+BD2
∴52=(5-AD)2+42
解得:AD=2,AD=8>5(舍去),
∴S△ABC=BC×AD=×8×2=8,
故答案是32或8.
点评:本题考查了垂径定理、勾股定理、等腰三角形三线合一定理、垂直平分线定理及性质.解题的关键是证明O在AD上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为6,则底角的正切值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC内接于半径为5厘米的⊙O,且BC=8厘米,则△ABC的面积等于
 
平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC内接于半径为5cm的⊙O,若底边BC=8cm,则△ABC的面积为
8或32
8或32
cm2

查看答案和解析>>

同步练习册答案