精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为6,E为BC上的一点,BE=2,F为AB上的一点,AF=3,P为AC上一点,则PF+PE的最小值为

【答案】
【解析】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,

过F作FG⊥CD于G,
在Rt△E′FG中,
GE′=CD﹣BE﹣BF=6﹣2﹣3=1,GF=6,
所以E′F=
所以答案是:
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“五一节”期间,小明一家自驾游去了离家240千米的某地,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

(1)求出y(千米)与x(小时)之间的函数表达式;
(2)他们出发2小时时,离目的地还有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1S2S3.若S1+S2+S315,则S2的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如上图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.则 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(

A.2
B.
C.
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

解答下列问题:
(1)这次抽样调查的样本容量是 , 并补全频数分布直方图;
(2)C组学生的频率为 , 在扇形统计图中D组的圆心角是度;
(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各式分解因式:
(1)3x﹣12x3
(2)(x2+4)2﹣16x2
(3)y(y+4)﹣4(y+1)
(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边ADE.

(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;

(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.

探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:

∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.

∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.

∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A

探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

查看答案和解析>>

同步练习册答案