精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
作图见解析

试题分析:首先作出角的平分线AD,然后作线段AD的垂直平分线,与AC的交点即为O,以点O为圆心,以OA长为半径作圆即可 
试题解析:作出角平分线AD,

作AD的中垂线交AC于点O,
作出⊙O,
∴⊙O为所求作的圆.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙M过坐标原点O,分别交两坐标轴于A(1,O),B(0,2)两点,直线CD交x轴于点C(6,0),交y轴于点D(0,3),过点O作直线OF,分别交⊙M于点E,交直线CD于点F.
(1)求证:∠CDO=∠BAO;
(2)求证:OE•OF=OA•OC;
(3)若OE=,试求点F的坐标.

D

 
D
 

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.
(1)证明△COF是等腰三角形,并求出CF的长;
(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与 x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作.
(1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),
①直线,直线,直线,直线都经过点P,在直线中,是⊙O的“x关联直线”的是     
②若直线是⊙O的“x关联直线”,则点M的横坐标的最大值是    
(2)点A(2,0),⊙A的半径为1,
①若P(-1,2),⊙A的“x关联直线”,点M的横坐标为,当最大时,求k的值;
②若P是y轴上一个动点,且点P的纵坐标,⊙A的两条“x关联直线”,是⊙A的两条切线,切点分别为C,D,作直线CD与x轴点于点E,当点P的位置发生变化时, AE的长度是否发生改变?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿(  )
A.图(1)需要的材料多
B.图(2)需要的材料多
C.图(1)、图(2)需要的材料一样多
D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆心角为120°,弧长为12π的扇形半径为(  )
A.6B.9C.18D.36

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(  )
A.两个外离的圆B.两个外切的圆
C.两个相交的圆D.两个内切的圆

查看答案和解析>>

同步练习册答案