精英家教网 > 初中数学 > 题目详情
如图,菱形ABCD中,AB=5,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,则PM+PB的最小值等于
5
2
3
5
2
3
分析:先连接BD,因为四边形ABCD是菱形且∠BAD=60°,所以△ABD是等边三角形,由于菱形的对角线互相垂直平分,所以点D是点B关于AC的对称点,AD=BD,连接MD,由等边三角形的性质可知DM⊥AB,再根据勾股定理即可求出BD的长.
解答:解:先连接BD,交AC于点P′,连接DM,BE,
∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,BE=DE,
∵∠BAD=60°,
∴△ABD是等边三角形,点D是点B关于AC的对称点,则BP′=DP′,
∴当P于P′重合时PM+PB的值最小,最小值为MD,
∵M是AB的中点,△ABD是等边三角形,
∴DM⊥AB,
∵AD=5,AM=
5
2

∴DM=
AD2-AM2
=
52-(
5
2
)2
=
5
2
3

故答案为:
5
2
3
点评:本题考查的是最短线路问题及菱形的性质,由菱形的性质得出点D是点B关于AC的对称点是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案