【题目】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.
【答案】
(1)解:设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,
根据题意得: = ,
解得:m=1600
经检验,m=1600是原方程的解,
m+400=1600+400=2000,
答:每台空调的进价为1600元,则每台电冰箱的进价为2000元
(2)解:设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,
则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,
根据题意得: ,
解得:33 ≤x≤40,
∵x为正整数,
∴x=34,35,36,37,38,39,40,
∴合理的方案共有7种,
即①电冰箱34台,空调66台;
②电冰箱35台,空调65台;
③电冰箱36台,空调64台;
④电冰箱37台,空调63台;
⑤电冰箱38台,空调62台;
⑥电冰箱39台,空调61台;
⑦电冰箱40台,空调60台;
∵y=﹣50x+15000,k=﹣50<0,
∴y随x的增大而减小,
∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),
答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元
【解析】(1)分式方程中的销售问题,题目中有两个相等关系,①每台电冰箱的进价比每台空调的进价多400元,用80000元购进电冰箱的数量与用64000元购进空调的数量相等,用第一个相等关系,设每台空调的进价为m元,表示出每台电冰箱的进价为(m+400)元,用第二个相等关系列方程, = .(2)销售问题中的确定方案和利润问题,题目中有两个不等关系,①要求购进空调数量不超过电冰箱数量的2倍,②总利润不低于13000元,根据题意设出设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,列出不等式组 ,确定出购买电冰箱的台数的范围,从而确定出购买方案,再利用一次函数的性质确定出,当x=34时,y有最大值,即可.
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,3).
(1)求抛物线的表达式及顶点D的坐标;
(2)如图甲,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图乙,过点A作y轴的平行线,交直线BC于点F,连接DA、DB四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动,设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6,AD=2 ,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E、A′、C三点在一条直线上时,DF的长度为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC与BD交于点O,将△ABD绕点D顺时针方向旋转,得到△EFD,旋转角为α(0°<α<180°)点A的对应点为点E,点B的对应点为点F
(1)求证:四边形形ABCD是菱形
(2)若∠BAD=30°,DE边为与AB边相交于点M,当点F恰好落在AC上时,求证:MD=ME
(3)若△ABD的周长是48,EF边与BC边交于点N,DF边与BC边交于点P,在旋转的过程中,当△FNP是直角三角形是,△FNP的面积是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | 1 | 2 | 3 | 4 | 5 | … |
y | … | 0 | ﹣3 | ﹣6 | ﹣6 | ﹣3 | … |
从上表可知,下列说法中正确的有( )
① =6;②函数y=ax2+bx+c的最小值为﹣6;③抛物线的对称轴是x= ;④方程ax2+bx+c=0有两个正整数解.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30°,点M,N分别在边OA,OB上,OM= ,ON=3 ,点P,Q分别在边OB,OA上运动,连接MP,PQ,QN,则MP+PQ+QN的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为△ABD的外接圆上的一动点(点C不在 上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2 , AM2 , BM2三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y= 图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣ >0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com