精英家教网 > 初中数学 > 题目详情
31、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:
(1)△AED∽△CBM;
(2)AE•CM=AC•CD.
分析:(1)由于△ABC是直角三角形,易得∠A+∠ABC=90°,而CD⊥AB,易得∠MCB+∠ABC=90°,利用同角的余角相等可得
∠A=∠MCB,同理可证∠1=∠2,而∠ADE=90°+∠1,∠CMB=90°+∠2,易证∠ADE=∠CMB,从而易证△AED∽△CBM;
(2)由(1)知△AED∽△CBM,那么AE:AD=CB:CM,于是AE•CM=AD•CB,再根据△ABC是直角三角形,CD是AB上的高,易知△ACD∽△CBD,易得AC•CD=AD•CB,等量代换可证AE•CM=AC•CD.
解答:证明:(1)∵△ABC是直角三角形,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠CDB=90°,
即∠MCB+∠ABC=90°,
∴∠A=∠MCB,
∵CD⊥AB,
∴∠2+∠DMB=90°,
∵DH⊥BM,
∴∠1+∠DMB=90°,
∴∠1=∠2,
又∵∠ADE=90°+∠1,∠CMB=90°+∠2,
∴∠ADE=∠CMB,
∴△AED∽△CBM;
(2)∵△AED∽△CBM,
∴AE:AD=CB:CM,
∴AE•CM=AD•CB,
∵△ABC是直角三角形,CD是AB上的高,
∴△ACD∽△CBD,
∴AC:AD=CB:CD,
∴AC•CD=AD•CB,
∴AE•CM=AC•CD.
点评:本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A=∠MCB以及∠ADE=∠CMB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案