精英家教网 > 初中数学 > 题目详情
精英家教网如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.
(1)求∠P的度数;
(2)若∠MON=80°,其余条件不变,求∠P的度数;
(3)经过(1)、(2)的计算,猜想并证明∠MON与∠P的关系.
分析:(1)利用外角性质,求得∠BAM+∠ABN=270°;由AP平分∠MAB,BP平分∠ABN.∴∠BAP+∠ABP=
1
2
(∠BAM+∠ABN)=135°,由三角形内角和定理,∴∠P=180°-135°=45°;
(2)与问题(1)的思路相同;
(3)利用外角性质,求得∠BAM+∠ABN=∠MON+∠ABO+∠MON+∠BAO=(∠MON+∠ABO+∠BAO)+∠MON=180°+∠MON;由AP平分∠MAB,BP平分∠ABN.求∠BAP+∠ABP,由三角形内角和定理,∠BAP+∠ABP+∠P=180°从而求所求的度数.
解答:解:(1)∵∠BAM是△AOB的外角
∴∠BAM=∠AOB+∠ABO
∵∠ABN是△AOB的外角
∴∠ABN=∠AOB+∠BAO
∴∠BAM+∠ABN=∠AOB+∠ABO+∠AOB+∠BAO=(∠AOB+∠ABO+∠BAO)+∠AOB=180°+90°=270°
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=
1
2
∠BAM,∠ABP=
1
2
∠ABN
∴∠BAP+∠ABP=
1
2
(∠BAM+∠ABN)=135°
在△ABP中
∠BAP+∠ABP+∠P=180°
∴∠P=180°-135°=45°;

(2)∵∠BAM是△AOB的外角
∴∠BAM=∠AOB+∠ABO
∵∠ABN是△AOB的外角
∴∠ABN=∠AOB+∠BAO
∴∠BAM+∠ABN=∠AOB+∠ABO+∠AOB+∠BAO=(∠AOB+∠ABO+∠BAO)+∠AOB=180°+80°=260°
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=
1
2
∠BAM,∠ABP=
1
2
∠ABN
∴∠BAP+∠ABP=
1
2
(∠BAM+∠ABN)=130°
在△ABP中
∠BAP+∠ABP+∠P=180°
∴∠P=180°-130°=50°;

(3)∠MON+2∠P=180°
∵∠BAM是△AOB的外角
∴∠BAM=∠MON+∠ABO
∵∠ABN是△AOB的外角
∴∠ABN=∠MON+∠BAO
∴∠BAM+∠ABN=∠MON+∠ABO+∠MON+∠BAO=(∠MON+∠ABO+∠BAO)+∠MON=180°+∠MON
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=
1
2
∠BAM,∠ABP=
1
2
∠ABN
∴∠BAP+∠ABP=
1
2
(∠BAM+∠ABN)=
1
2
(180°+∠MON)
在△ABP中
∠BAP+∠ABP+∠P=180°
1
2
(180°+∠MON)+∠P=180°
∴∠MON+2∠P=180°.
点评:考查三角形外角性质、内角和定理,角平分线的定义等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠MON=90°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相交于点C.试猜想:∠ACB的大小是否随A、B的移动发生变化?如果保持不变,请给出证明;如果随点A、B的移动发生变化,请给出变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为
2
+1
2
+1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=90°,边长为2的等边三角形ABC在∠MON内部,但两顶点A、B分别在边OM、ON上滑动,点D是AB边中点
(1)求CD的长度;
(2)探究:△ABC在滑动的过程中,点C与点O之间的最大距离是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连结OC.若AC=4,BC=3,AB=5,则OC的长度的最大值是
5
5

查看答案和解析>>

同步练习册答案