精英家教网 > 初中数学 > 题目详情
9.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

分析 (1)要证AP=BQ,只需证△PBA≌△QCB即可;
(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=$\sqrt{13}$,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-2.在Rt△MHQ中运用勾股定理就可解决问题;
(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.

解答 解:(1)AP=BQ.
理由:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
$\left\{\begin{array}{l}{∠PAB=∠CBQ}\\{AB=BC}\\{∠ABP=∠BCQ}\end{array}\right.$,
∴△PBA≌△QCB,
∴AP=BQ;

(2)过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP=$\sqrt{A{B}^{2}+P{B}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
∴BH=$\sqrt{B{Q}^{2}-Q{H}^{2}}$=$\sqrt{13-9}$=2.
∵四边形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折叠可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
设QM=x,则有MB=x,MH=x-2.
在Rt△MHQ中,
根据勾股定理可得x2=(x-2)2+32
解得x=$\frac{13}{4}$.
∴QM的长为$\frac{13}{4}$;

(3)过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2
∴BH2=BQ2-QH2=AB2+PB2-AB2=PB2
∴BH=PB=m.
设QM=x,则有MB=QM=x,MH=x-m.
在Rt△MHQ中,
根据勾股定理可得x2=(x-m)2+(m+n)2
解得x=m+n+$\frac{{n}^{2}}{2m}$,
∴AM=MB-AB=m+n+$\frac{{n}^{2}}{2m}$-m-n=$\frac{{n}^{2}}{2m}$.
∴AM的长为$\frac{{n}^{2}}{2m}$.

点评 本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.根据要求将下面题目改编成一道新题:如图,将矩形ABCD沿对角线AC折叠,点B落在E处,AE交DC于点F,求证:折叠后的重叠部分(即△FAC)是等腰三角形
请你将上述题目的条件“矩形ABCD”改为另一种四边形,其余条件都不变,使结论仍然成立.再根据改编后的题目画出图形,写出已知和求证,并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB∥DE,∠1=∠2.求证:AE∥DC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为C
A.平行四边形  B.菱形   C.矩形    D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形.
②求四边形AFF′D的两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.
(1)求两次抽得相同花色的概率;
(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是A′(5,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:$\sqrt{4}$-|-2|+($\frac{1}{2}$)-1-20150

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69幅.

查看答案和解析>>

同步练习册答案